首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the perovskites Sr2InSbO6 and Sr2YSbO6 have been investigated by X-ray and neutron powder diffraction. Both compounds are of monoclinic distortion, space group P21/n, with the lattice parameters related to that of the ideal cubic-perovskite (ap) by ap, c≈2ap and β≈90°. The distortions that occur in Sr2InSbO6 and Sr2YSbO6 can be viewed as due to the octahedral tilts around both the two-fold [110]p- and the four-fold [001]p-axis of the cubic aristotype with the oxygen's shifted away from the In/Y(III) ions towards the Sb(V) ions, creating an ordered arrangement of the alternating InO6/YO6 and SbO6 octahedra.  相似文献   

2.
Using high-resolution time-of-flight neutron powder diffraction, the crystal structure of BaPbO3 has been reinvestigated at room temperature and 4.2 K. By comparing different structural models, i.e. the orthorhombic Imma and the monoclinic I2/m, it is concluded that the former one describes correctly the structure of BaPbO3, and no ImmaI2/m phase transition exists in the temperature range investigated. The apparent monoclinic distortion is likely due to the existence of twins that introduce the micro strain resulting in anisotropic line broadening of the observed profiles.  相似文献   

3.
Low-temperature neutron diffraction measurements were carried out on a powder sample of the compound La0.75Sr0.25CrO3 in order to elucidate its magnetic structure. Rietveld analysis of the neutron diffraction data, as a function of temperature, showed that it possesses a G-type antiferromagnetic alignment of Cr spins at all temperatures below 300 K. Down to the lowest achievable temperature, viz. 17 K, the Cr site moments were found to be the weighted average of the 75% Cr3+ and 25% Cr4+ spin-only ionic moments. At 17 K, the Cr site moment was 2.71(5) μB/Cr ion. There is no observable change in the Cr–O bond lengths as a function of temperature. The tilt angles of the CrO6 octahedra marginally increase with decreasing temperature.  相似文献   

4.
La2O3 doped nanocrystalline zirconia (ZrO2) was prepared by chemical co-precipitation method for the 3, 5, 8, 10, 15, 20 and 30 mol.% concentrations of La2O3. Structural studies were performed using X-ray diffraction (XRD). All the as-synthesized samples were found to be in monoclinic phase. As-synthesized samples were given heat treatment at higher temperatures for tetragonal/cubic structural phase stabilization. Sintering the samples at temperature 1173 K stabilized the tetragonal and cubic phases. A slight shift in the 100% peak of the cubic phase was observed towards the low diffraction angle indicating the substitution of the bigger La3+ ion into the ZrO2 lattice. Grain sizes were found to lie between 10 and 13 nm. Electrical conductivity studies were performed on the cubic phase stabilized La2O3-ZrO2 by complex impedance spectroscopy. The conductivity increases up to the dopant concentration 10 mol.% and then decreases with further increase in La2O3 concentration. Initial increase in conductivity is correlated to the stabilization of the cubic phase and the subsequent decrease in the conductivity with the dopant content is interpreted on the basis of the oxygen-ion movement model. Electrical conductivity has contributions from grain and grain boundary regions. But the grain boundary conductivity is slightly higher than the corresponding grain conductivity. Higher grain boundary conductivity shows higher diffusion coefficient for the atoms on the surface of the ZrO2 grains. The possible mechanism of the oxygen ion conduction in the La2O3 stabilized zirconia (LSZ) is reported. The Barton, Nakajima and Namikawa (BNN) relation has been applied to the conductivity data and found that the d.c. and a.c. conductions have been correlated to each other by the same mechanism.  相似文献   

5.
ErCu2Si2 crystallises in the tetragonal ThCr2Si2-type crystal structure. In this paper results of magnetometric, electrical transport, specific heat as well as neutron diffraction are reported. Results of electrical resistivity and specific heat measurements performed at low temperature yield existence of magnetic ordering roughly at 1.3 K. These results are in concert with neutron diffraction measurements, which reveal simple antiferromagnetic ordering between 0.47 and 1.00 K. At temperatures ranging from 1.00 up to 1.50 K an additional incommensurate magnetic structure was observed. The propagation vector k=(0;0;0.074) was proposed to describe magnetic reflections within the amplitude modulated magnetic structure. Basing on specific heat studies the crystal field levels splitting scheme and magnetic entropy were calculated.  相似文献   

6.
In this work neutron diffraction studies of Tb2Rh3Si5 compound are reported. The compound crystallizes in the monoclinic crystal structure of Lu2Co3Si5-type. At 1.5 K an antiferromagnetic ordering with a propagation vector k=(1/2;1/2;1/2) was observed. The Tb magnetic moments of 9.8(2) μB form a non-collinear magnetic structure. In the vicinity of Néel temperature of 8 K a change of the magnetic ordering is evidenced. The change seems to be connected with phase transition from commensurate to incommensurate sine-wave modulation of the Tb magnetic moments.  相似文献   

7.
The Nd(Ba1−xNdx)2Cu3O7+δ solid solution, Nd123ss, has been investigated by neutron powder diffraction and Rietveld analysis. It is confirmed that the crystal structure of its Nd-rich limit, Nd(Ba0.55Nd0.45)2Cu3O7.33, is satisfactorily described in the space group Bmmm (a=7.7679(3), b=3.8542(1), and c=22.9590(9) Å). The fourfold superstructure with respect to the orthorhombic cell of YBCO is due to ordering between Ba and Nd atoms in the bridging layer. Differences with previous works concern exclusively the distribution of O atoms in the ‘chain’ layer. Our results give strong indications that ordering also occurs for lower Nd contents.  相似文献   

8.
The effects of oxygen doping on the hole-carrying CuO2-layers in Tl2(Ba1−xSrx)2Ca2Cu3Oy were studied by combined chemical and valence analysis, Tc measurements and neutron diffraction. The highest Tc is characterized by an optimal excess oxygen content, Δy, dichotomizing the under- and over-doped regions for each Sr concentration. While the average Tl valence is close to 3.0 and independent of Δy, the average Cu valence shows a linear dependence with Δy. An increase of the flatness of the CuO2 plane, characterized by the O(2)-Cu(2)-O(2) bond angle of ∼176°, was observed at the optimal Δy.  相似文献   

9.
10.
The phonon spectra of metallic disilicides VSi2, NbSi2, and TaSi2 have been studied in detail by inelastic neutron scattering at 300 K and specific heat measurements between 10 K and 250 K. The specific heat calculated from the generalised phonon density of states extracted from neutron measurements is in good agreement with the measured lattice contribution to the specific heat. The properties of the phonon spectra are discussed in relation with other data reported for these isostructural and isoelectronic disilicides.  相似文献   

11.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

12.
We report neutron diffraction measurements on CeNi4Mn, which has recently been identified as a soft ferromagnet with a sizeable spin-transport polarization. Our data show conclusively that the Mn atoms occupy a unique site (4c) in the unit cell, which has the symmetry of the cubic MgCu4Sn-type structure. We infer a moment of 4.6 μB on Mn at 17 K, which is oriented ferromagnetically along the {101} plane. The amplitude of the Mn vibrational motion is found to be larger than that of Ce and Ni atoms at all temperatures, thereby lending support to theoretical prediction of rattling phonon modes in this compound.  相似文献   

13.
We have investigated the pressure-induced structural phase transition in ReO3 by neutron diffraction on a single crystal. We collected neutron diffraction intensities from the ambient and high pressure phases at P=7 kbar and refined the crystal structures. We have determined the stability of the high pressure phase as a function temperature down to T=2 K and have constructed the (P-T) phase diagram. The critical pressure is Pc=5.2 kbar at T=300 K and decreases almost linearly with decreasing temperature to become Pc=2.5 kbar at T=50 K. The phase transition is driven by the softening of the M3 phonon mode. The high pressure phase is formed by the rigid rotation of almost undistorted ReO6 octahedra and the Re-O-Re angle deviates from 180°. We do not see any evidence for the existence of the tetragonal (P4/mbm) intermediate pressure phase reported earlier.  相似文献   

14.
We review our nuclear-magnetic resonance (NMR) and nuclear-quadrupole-resonance (NQR) studies in superconducting Sr2RuO4, which have been performed in order to investigate the gap structure and the pairing symmetry in the superconducting state and magnetic fluctuations in the normal state. The spin-lattice relaxation rate (1/T1) of a high-quality sample with shows a sharp decrease without a coherence peak just below Tc, followed by a T3 behavior down to 0.15 K. This result indicates that the superconducting gap in pure Sr2RuO4 is a highly anisotropic character with a line-node gap. The Knight shift, which is related to the spin susceptibility, is unchanged in the superconducting state irrespective of the direction of the applied fields and various magnitude of the field. This result strongly suggests that the superconducting pairs are in the spin-triplet state, and the spin direction of the triplet pairs is considered to be changed by small fields of several hundred Oe.  相似文献   

15.
16.
It is shown experimentally that NdAl2 and hcp cobalt are one-dimensional (1D) bulk ferromagnets. For hcp cobalt this is only under the condition that the sample is magnetically saturated, i.e. that all moments are aligned parallel to the hexagonal c-axis. In 1D magnets the transverse interactions need not to be zero but must be sufficiently weak such that the transverse correlation length does not diverge at the critical temperature. The transverse interactions are then not relevant and the phase transition is driven by the longitudinal interactions. On the other hand, magnetic Bragg scattering relies on finite transverse correlations. For NdAl2 no conventional magnetic Bragg scattering is observed if all moments are aligned vertical to the scattering plane by a magnetic field. For hcp cobalt the scattering intensity is considerably reduced in this geometry instead of having its maximum. From this observation it can be concluded that the transverse correlation length is practically zero in NdAl2 but has a finite value in hcp cobalt. The macroscopic magnetization shows normal ferromagnetic saturation.  相似文献   

17.
(n-C3H7)4N[FeIIFeIII(dto)3] shows a new type of first order phase transition called charge-transfer phase transition around 120 K, where the charge transfer between FeII and FeIII occurs reversibly. Recently, we have succeeded in obtaining single crystals of the title complex and determined the crystal structure at room temperature. Crystal data: space group P63, Z=2. Moreover, we have investigated the structural transition caused by the charge-transfer phase transition by means of powder X-ray diffraction measurement. When the temperature is decreased, the a-axis, which corresponds to the hexagonal ring size in two-dimensional honeycomb network structure of [FeIIFeIII(dto)3], contracts by 0.1 Å at the charge-transfer transition temperature (TCT), while the c-axis, perpendicular to the honeycomb network layer, elongates by 0.1 Å at TCT. Consequently, when the temperature is decreased, the unit cell volume decreases without noticeable anomaly around TCT, which is responsible for the quite small vibrational contribution to the entropy change, compared with usual spin crossover transition. Thus, the charge-transfer phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] is regarded as spin entropy driven phase transition.  相似文献   

18.
The crystal structure of double perovskite Sr2FeMoO6 synthesized via solid-state reaction at 1280 °C under a reduction atmosphere is refined by Rietveld technique based on X-ray powder diffraction (XRD) data in 2θ range of 15-140°. An antisite content (AS), i.e. Fe on the Mo sites (=Mo on the Fe sites), of 12.1(1)% is derived. In reference to the refinement results, a series of X-ray and neutron powder diffraction (NPD) data with different antisite contents, ranging from 0 (completely ordered) to 50% (completely disordered), are generated with a Poisonian noise added and subjected to Rietveld refinements with the same initial values for the refinable parameters. The AS is reproduced satisfactorily from the refinement of XRD data and the combined refinement of XRD and NPD data with a relative deviation smaller than 4%, whereas the relative deviation of AS derived from the refinement of NPD data can be as large as 50%. However, the atomic occupancies and isotropic temperature factors of all the atoms can be reasonably reproduced from the refinement of NPD data and the combined refinement of XRD and NPD data, whereas these data can be reproduced only for cations (Sr, Fe, Mo) from the refinement of XRD data. The present simulation studies shed light on understanding the controversial statements derived from XRD and NPD work regarding the antisite defects in Sr2FeMoO6, which in turn is indispensable for understanding the mechanism of large room temperature low-field magnetoresistance of the compound.  相似文献   

19.
The structural phase transition in annealed CaMn7O12 has been investigated by using high resolution synchrotron radiation powder diffraction. There is a phase coexistence phenomenon: two different crystallographic phases coexist in the material between 410 and 458 K. The first one is trigonal and it has a charge ordering (CO) of the Mn3+ and Mn4+ ions, while the second one is cubic and charge delocalized (CD). The volume fraction of the CD phase increases with temperature from 22% at 418 K up to 100% at 468 K. Both phases have domains of at least 150 nm at each temperature. The annealing of CaMn7O12 relaxed a part of the strains in the lattice, but did not influence the phase coexistence phenomenon.  相似文献   

20.
Epitaxial and c-axis oriented double perovskite Sr2CrWO6 thin films were prepared on SrTiO3 (100) and LaAlO3 (100) substrates by pulsed-laser deposition. Structural, magnetic and transport properties were found to be sensitive to the gas conditions employed during the deposition. A small amount of oxygen along with Ar during the deposition was found to be essential for B-site ordering; such films displayed lattice parameters close to the bulk value and display ferromagnetic metallic behavior. The Curie temperature observed above 500 K in these films is higher than bulk Sr2CrWO6 samples. Films grown without oxygen were observed to have long c-parameter and no B-site ordering; they were non-magnetic and semiconducting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号