首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 230 K with structural transformation, showing hysteresis on heating and cooling. On the other hand, CuCr2S4 has the same normal spinel structure without the structural transformation. CuCr2S4 has been found to be metallic and ferromagnetic with the Curie temperature Tc~377 K. In order to see the effect of substituting Cr for Ir on the M-I transition, we have carried out a systematic experimental study of electrical and magnetic properties of Cu(Ir1−xCrx)2S4. The M-I transition temperature shifts to lower temperature with increasing Cr-concentration x and this transition is not detected above x~0.05. The ferromagnetic transition temperature decreases as x is decreased and the transition does not occur below x~0.20.  相似文献   

2.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

3.
Si1−xMnx diluted magnetic semiconductor (DMS) bulks were formed by using an implantation and annealing method. Energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), and double-crystal rocking X-ray diffraction (DCRXD) measurements showed that the grown materials were Si1−xMnx crystalline bulks. Hall effect measurements showed that annealed Si1−xMnx bulks were p-type semiconductors. The magnetization curve as a function of the magnetic field clearly showed that the ferromagnetism in the annealed Si1−xMnx bulks originated from the interaction between interstitial and substitutional Mn+ ions, which was confirmed by the DCRXD measurements. The magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature was approximately 75 K. The present results can help to improve understanding of the formation mechanism of ferromagnetism in Si1−xMnx DMS bulks.  相似文献   

4.
We have measured magnetization curves and powder neutron diffraction of double-layered Ruddlesden-Popper type ruthenate Sr3−xCaxRu2O7 (x=1.5, 2.0 and 3.0). The field dependence of the magnetization revealed that the transition field of metamagnetic transition along the b-axis shifted to lower fields and that the transition became broad with increasing Sr content. The slope of the magnetization curve also increased with increasing Sr content below the metamagnetic transition. These results indicate that an itinerant component is partly introduced by the Sr substitution. From the magnetic reflection, on cooling below TN, an additional reflection was observed at (0 0 1) for each x, and the amplitude increased with decreasing temperature. The observed diffraction patterns are very similar to those of Ca3Ru2O7. We conclude that the magnetic structure of the antiferromagnetic ordered phase is basically the same structure with that of Ca3Ru2O7.  相似文献   

5.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

6.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

7.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

8.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

9.
Y.D. Su 《Applied Surface Science》2009,255(18):8164-8170
We deposit ternary WCxNy thin films on Si (1 0 0) substrates at 500 °C using direct current (DC) reactive magnetron sputtering in a mixture of CH4/N2/Ar discharge, and explore the effects of substrate bias (Vb) on the intrinsic stress, preferred orientation and phase transition for the obtained films by virtue of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and selective area electron diffraction (SAED). We find that with increasing the absolute value of Vb up to 200 V the carbon (x) and nitrogen (y) atom concentrations of WCxNy films keep almost constant with the values of 0.75 and 0.25, respectively. The XPS and SAED results, combined with the density-functional theory (DFT) calculations on the electronic structure of WC0.75N0.25, show our obtained WCxNy films are single-phase of carbonitrides. Furthermore, we find that the compressive stress sharply increases with increasing the absolute value of Vb, which leads to a pronounced change in the preferred orientation and phase structure for the film, in which a phase transition from cubic β-WCxNy to hexagonal α-WCxNy occurs as Vb is in the range of −40 to −120 V. In order to reveal the relationship between the stress and phase transition as well as preferred orientation, the DFT calculations are used to obtain the elastic constants for β-WCxNy and α-WCxNy. The calculated results show that the preferred orientation is dependent on the competition between strain energy and surface energy, and the phase transition can be attributed to a decrease in the strain energy.  相似文献   

10.
Compositional behavior of Urbach absorption edge is studied as well as the effect of compositional disordering on the parameters of exciton-phonon interaction, phase transition temperatures and electric conductivity in Cu6P(S1−xSex)5Br1−yIy superionic solid solutions. The effect of different types of disordering on the optical absorption processes and specific features of compositional changes in the absorption edge spectra under S→Se and Br→I anion substitution in the mixed crystals are investigated. (x, T) phase diagrams for Cu6P(S1−xSex)5X (X=I, Br) solid solutions are studied.  相似文献   

11.
A series of the SmFeAsO1−xFx and GdFeAsO1−xFx (x=0.05, 0.1, 0.15, 0.2, 0.25) samples have been prepared using nano-scaled ReF3 as the fluorine resource at a relatively low temperature. The samples have been sintered at 1100 and 1120 °C for SmFeAsO1−xFx and GdFeAsO1−xFx, respectively. These temperatures are at least 50-60° lower than other previous reports. All of the so-prepared samples possess a tetragonal ZrCuSiAs-type structure. Dramatically supression of the lattice parameters and increase in Tc proved that this low temperature process was more effective to introduce fluorine into REFeAsO. Superconducting transition appeared at 39.5 K for SmFeAsO1−xFx with x=0.05 and at 22 K for GdFeAsO1−xFx with x=0.1. The highest Tc was detected to be 54 K in SmFeAsO0.8F0.2 and 40.2 K in GdFeAsO0.75F0.25. The use of the nano-scaled ReF3 compounds has improved the efficiency of the present low temperature method in synthesizing the fluorine-doped iron-based superconductors.  相似文献   

12.
In this work, X-ray diffraction data taken on Bi1−xLaxFeO3 solid solutions are used to verify the following structural phase transitions: “polar rhombohedral-antipolar orthorhombic” at x≈0.16 and “commensurate-incommensurate” within the orthorhombic phase at x≈0.18. In contrast, in the Bi1−xPrxFeO3 series, the polar rhombohedral phase transforms into an antipolar orthorhombic one at x≥0.13. The polar rhombohedral phase near the morphotropic phase boundary exhibits an isothermal transformation into an antipolar orthorhombic phase, though the transformation occurs much faster in the case of La-doped compounds. The incommensurate structural phase was not detected in Bi1−xPrxFeO3 solid solutions. The ternary structural phase diagram is constructed for (Bi,La,Pr)FeO3 systems. In addition, the polar rhombohedral phase exhibits a magnetic field-induced transition from the modulated antiferromagnetic state into a homogeneous weak ferromagnetic state whereas the antipolar phase is a weak ferromagnetic state in the absence of an external field.  相似文献   

13.
Polycrystalline La2−xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x=0.1-0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centres in the unit cell leading to increase in critical current density and flux pinning.  相似文献   

14.
A series of Ag1−x(Ni0.8Co0.2)x granular film samples were prepared using an ion-beam cosputtering technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were performed to investigate the microstructure of these samples. The results measured using a vibrating sample magnetometer (VSM) show a gradual change from superparamagnetism to ferromagnetism as x increases in these samples. Magnetoresistance was measured using a conventional four terminal method at room temperature. As x increases, a transition from giant magnetoresistance (GMR) to anisotropic magnetoresistance (AMR) has been observed. The stripe-type domains have been observed using magnetic force microscopy (MFM) in the high x samples, and the domains gradually disappear as x decreases. It suggests that the transition from GMR to AMR may result from intergranular interaction (not only dipolar) in the samples as x increases.  相似文献   

15.
We report on the analysis of optical transmittance spectra and the resulting ferromagnetic characteristics of sputtered Zn1−xCoxO films. Zn1−xCoxO films were prepared on (0001)-oriented Al2O3 substrates by the radio-frequency (rf) magnetron co-sputtering method. The XRD results showed that the crystallinity of films was properly maintained up to x=0.30 and no second phase peaks were detected up to x=0.40. The transmittance spectra showed both the increase of the absorption band intensity and the red shift of the absorption peak as well as the band edge with increasing x. We have proved experimentally that these changes depend on Co concentration. These optical properties suggest that sp-d exchange interactions and typical d-d transitions become activated with increasing x, which leads to the enhancement of ferromagnetic properties in Zn1−xCoxO films as shown in the AGM results. Therefore, it is concluded that the ferromagnetism derives from the substitution of Co2+ for Zn2+ without changing the wurtzite structure.  相似文献   

16.
We have investigated three-dimensional electronic structure for NaxCoO2 (x=0.77 and 0.65) by high-resolution angle-resolved photoemission spectroscopy to study the origin of antiferromagnetic (AF) transition of highly doped NaxCoO2(x>0.75). The a1g large hole-like Fermi surface (FS) in x=0.77 shows distinct three-dimensionality along the kz direction, and a three-dimensional small electron pocket appears around Γ point, indicating strong inter-layer electronic correlation. On the other hand, x=0.65 sample does not show three-dimensional behavior. This result indicates that transition of FS as a function of band filling is closely related to the occurrence of the magnetic transition in highly doped NaxCoO2.  相似文献   

17.
The magnetic and transport properties of nanocrystalline ZnxFe3−xO4 with x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, respectively, fabricated by the sol-gel method have been investigated. Large magnetoresistance (MR) was observed and found to be originated both from the tunneling of the spin-polarized electrons across the adjacent ferromagnetic grains and the scattering by the canted spins at the grain surface near the grain boundaries. It has been revealed that the MR for the ZnxFe3−xO4 samples (x=0, 0.5 and 1.0) increases with the temperature decreasing from room temperature until a maximum is reached at around 55 K. Then a sharp drop occurs with the further decrease in temperature, regarded as a spin (cluster) glass transition. For the samples studied, a biggest low field (0.5 T) MR value of about 20% for x=0 at 55 K has been obtained. The mechanism of the MR behavior of the materials was discussed.  相似文献   

18.
Highly oriented (100) thin films of LaVO3 and La1−xSrxVO3 have been fabricated by pulsed laser deposition in a reducing atmosphere. The films show a transition from insulating to metallic behaviour in the composition region of x, 0.175<x<0.200. In the single crystals of the antiferromagnetic insulating phase, a first-order structural phase transition is observed few degrees below the magnetic transition, which manifests itself as a kink in the temperature dependence of resistivity. In the highly oriented thin films of LaVO3 and La1−xSrxVO3 fabricated on lattice matched substrates in this study, the structural phase transformation in the insulating phase has been suppressed. The electrical conduction is found to take place via hopping through localized states at low temperatures. The metallic compositions show a non-linear (T1.5) behaviour in the temperature dependence of resistivity. V (2p) core level spectra of these films show a gradual change in the relative intensities of V3+ and V4+ ions as the value of x increases.  相似文献   

19.
(Ga1−xMnx)N thin films grown on GaN buffer layers by using molecular beam epitaxy were investigated with the goal of producing diluted magnetic semiconductors (DMSs) with band-edge exciton transitions for applications in optomagnetic devices. The magnetization curve as a function of the magnetic field at 5 K indicated that ferromagnetism existed in the (Ga1−xMnx)N thin films, and the magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature of the (Ga1−xMnx)N thin film was above room temperature. Photoluminescence and photoluminescence excitation spectra showed that band-edge exciton transitions in (Ga1−xMnx)N thin films appeared. These results indicate that the (Ga1−xMnx)N DMSs with a magnetic single phase hold promise for potential applications in spin optoelectronic devices in the blue region of the spectrum.  相似文献   

20.
Using a spectroscopic ellipsometry, pseudodielectric functions 〈?〉 of InxAl1−xAs ternary alloy films (x = 0.43, 0.62, 0.75, and 1.00) from 0.74 to 6.48 eV were determined. Fast in-situ chemical etching to effectively remove surface overlayers using charge-coupled device detector and to avoid the reoxidation of the surface of films prior to the ellipsometric spectrum measurement was performed. At the high energy region, an additional critical point structure which is interpreted as the E′1 transition from the band structure calculation of the linear augmented Slater-type orbital method was reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号