首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Optical transitions in normal-spinel Co3O4 have been identified by investigating the variation of its optical absorption spectrum with the replacement of Co by Zn. Three optical-transition structures were located at about 1.65, 2.4, and 2.8 eV from the measured dielectric function of Co3O4 by spectroscopic ellipsometry. The variation of the absorption structures with the Zn substitution (ZnxCo3−xO4) can be explained in terms of charge-transfer transitions involving d states of Co ions. The 1.65 eV structure is assigned to a d-d charge-transfer transition between the t2g states of octahedral Co3+ ion and t2 states of tetrahedral Co2+ ion, t2g(Co3+)→t2(Co2+). The 2.4 and 2.8 eV structures are interpreted as due to charge-transfer transitions involving the p states of O2− ion: p(O2−)→t2(Co2+) for the 2.4 eV absorption and p(O2−)→eg(Co3+) for the 2.8 eV absorption. The observed gradual reduction of the 1.65 and 2.4 eV absorption strength with the increase of the Zn composition for ZnxCo3−xO4 can be explained in terms of the substitution of the tetrahedral Co2+ sites by Zn2+ ions. The crystal-field splitting ΔOh between the eg and the t2g states of the octahedral Co3+ ion is estimated to be 2 eV.  相似文献   

2.
The magnetization, resistivity ρ, thermoelectric power (TEP) S, and thermal conductivity κ in perovskite cobalt oxide Gd0.7Sr0.3CoO3 have been investigated systematically. Based on the temperature dependence of susceptibility χg(T) and Seebeck coefficient S(T), a combination of the intermediate-spin (IS) state for Co3+ and the low-spin (LS) state for Co4+ can be suggested. A metal-insulator transition (MIT) caused by the hopping of σ* electrons (localized or delocalized eg electrons) from the IS Co3+ to the LS Co4+ is observed. Meanwhile, S(T) curve also displays an obvious phonon drag effect. In addition, based on the analysis of the temperature dependence of S(T) and ρ(T), the high-temperature small polaron conduction and the low-temperature variable-range-hopping conduction are suggested, respectively. As to thermal conduction κ(T), rather low κ values in the whole measured temperature range is attributed to unusually large local Jahn-Teller (JT) distortion of Co3+O6 octahedra with IS state.  相似文献   

3.
The spin-Hamiltonian (SH) parameters (g factors g //, g and hyperfine structure constants A //, A ) for Co2+ ions at the trigonal Mg2+ (I) and Mg2+ (II) sites of RbMgF3 crystal are calculated from the second-order perturbation formulas based on the cluster approach for 3d7 ions in trigonal symmetry. From the calculations, it is found that the calculated SH parameters for Co2+ ion at the Mg2+ (I) site are in poor agreement with, but those for Co2+ at the Mg2+ (II) site are close to, the experimental values. Therefore, we suggest that Co2+ in RbMgF3 crystal substitutes for Mg2+ (II) ion. The results are discussed.  相似文献   

4.
GdCoO3, which has the GdFeO3 structure, has been studied between 77 and 1200 K by D.T.A., X-ray diffraction, magnetic susceptibility, electric conductivity and thermoelectric power. All properties observed, although different from those of LaCoO3, fit with the corresponding Goodenough localized electron model. With rising temperature cobalt ions pass progressively from a low-spin CoIII(t62geg0) state to a Co3+(t42geg2) high-spin state.  相似文献   

5.
We observe a sharp increase in negative magneto-resistance ratio up to 40% for x=0.1, in La0.5Sr0.5Co1−xRuxO3 which is due to the magnetic disorder induced by an anti-ferromagnetic interaction between Co and Ru ions. We also observe a metal to insulator and a ferromagnetic to anti-ferromagnetic transition for 0≤x≤0.3. Ruthenium (IV) ion disrupts an intermediate spin state of cobalt (Co3+:t2g5eg1), forcing a double exchange mediated ferromagnetic state to an anti-ferromagnetic spin state for x≥0.2.  相似文献   

6.
DFT calculations are employed to bulk and surface properties of spinel oxide Co3O4. The bulk magnetic structure is calculated to be antiferromagnetic, with a Co2+ moment of 2.631 μB in the antiferromagnetic state. There are three predicted electron transitions O(2p) → Co2+(t2g) of 2.2 eV, O(2p) → Co3+(eg) of 2.9 eV and Co3+(t2g) → Co2+(t2g) of 3.3 eV, and the former two transitions are close to the corresponding experimental values 2.8 and 2.4 eV. The naturally occurring Co3O4 (1 1 0) and (1 1 1) surfaces were considered for surface calculations. For ideal Co3O4 (1 1 0) surfaces, the surface relaxations are not significant, while for ideal Co3O4 (1 1 1) surfaces the relaxation of Co2+ cations in the tetrahedral sites is drastic, which agrees with the experiment observation. The stability over different oxygen environments for possible ideal and defect surface terminations were explored.  相似文献   

7.
Theg-factor of the 2+ rotational state of184W was redetermined by an IPAC measurement in an external magnetic field of 9.45 (5)T as: $$g_{2^ + } (^{184} W) = + 0.289(7).$$ In the evaluation the remeasured half-life of the 2+ state: $$T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} (2^ + ) = 1.251(12)ns$$ was used. TDPAC-measurements with a sample of carrierfree184Re in high purity iron gave the hyperfine fields: $$B_{300 K}^{hf} (^{184} W_2 + \underline {Fe} ) = 70.1(21)T$$ and $$B_{40 K}^{hf} (^{184} W_{2^ + } \underline {Fe} ) = 71.8(22)T.$$ A comparison with the hyperfine field known from a spin echo experiment with183W g Fe leads to the hyperfine anomaly: $$^{184} W_{2^ + } \Delta ^{183} W_g = + 0.145(36).$$ The hyperfine splitting observed in a Mössbauer source experiment with another sample of carrierfree184m Re in high purity iron indicates that the smaller splitting, measured previously by a Mössbauer absorber experiment is due to the high tungsten concentration in the absorber. The new value for theg-factor of the 2+ state together with the result of the Mössbauer experiment allow an improved calibration for our recent investigation of theg R -factors of the 4+ and 6+ rotational states. The recalculated values are: $$g_{4^ + } (^{184} W) = + 0.293(23)$$ and $$g_{6^ + } (^{184} W) = + 0.299(43).$$ The remeasured 792-111 keVγ-γ angular correlation $$W(\Theta ) = 1 - 0.034(4) \cdot P_2 + 0.325(6) \cdot P_4 $$ gives for the mixing ratio of theK-forbidden 792keV transition: $$\delta ({{E2} \mathord{\left/ {\vphantom {{E2} {M1}}} \right. \kern-\nulldelimiterspace} {M1}}) = - \left( {17.6\begin{array}{*{20}c} { + 1.8} \\ { - 1.5} \\ \end{array} } \right).$$ A detailed investigation of the attenuation ofγ-γ angular correlations in liquid sources of184Re and184m Re revealed the reason for erroneous results of early measurements of the 2+ g R -factor: The time dependence of the perturbation is not of a simple exponential type. It contains an unresolved strong fast component.  相似文献   

8.
The linear muffin-tin orbital method in the local density approximation (LDA + U) explicitly considering Coulomb correlations has been applied to calculate the electronic structure, magnetic moments, and parameters of the Heisenberg exchange interaction for cobalt ions in BaCoS2. Five solutions close in total energy with various orbital ordering of Co2+ ions and almost identical spin magnetic moments μ = 2.32μB of the Co2+ ion 3d-shell have been found. The BaCoS2 ground state can be considered as a set of energy-degenerate orbital-ordered configurations of Co2+ ions in the high-spin state.  相似文献   

9.
The electron paramagnetic resonance (EPR) of Nd3+ ion in KY(WO4)2 single crystal was investigated at T=4.2 K using an X-band spectrometer. The observed resonance absorption represents the complex superposition of three spectra corresponding to neodymium isotopes with different nuclear momenta. The EPR spectrum is characterized by a strong g-factor anisotropy. The temperature dependences of the g-factor were caused by strong spin-orbit and orbit-lattice coupling. The resonance lines become broader as temperature increases due to the short spin-lattice relaxation time.  相似文献   

10.
Theg-factor of the 7+ state in100Rh withT 1/2=140(5) ns and of the 6? state in104Rh withT 1/2=47(3)ns has been measured by the time-differential perturbedγ-ray angular distribution method (TDPAD). The obtained values are +0.67(2) and +0.33(1) respectively. The two nuclei were populated with reactions induced by7Li on96,100Mo at a bombarding energy of 30 MeV. Shell model calculations using effective single particle moments show that the 7+ state in100Rh has mostly a πg 9/2 ? vd 5/2 configuration, while the main component of the 6? state in104Rh is the πg 9/2 ? vh 11/2.  相似文献   

11.
The magnetic properties of Li x CoO2 for x = 0.94, 0.75, 0.66, and 0.51 are investigated within the method combining the generalized gradient approximation with dynamical mean field theory (GGA + DMFT). A delicate interplay between Hund’s exchange energy and t 2g ?e g crystal field splitting is found to be responsible for the high-spin to low-spin state transition for Co4+ ions. The GGA + DMFT calculations show that the Co4+ ions at a small doping level adopt the high-spin state, while delithiation leads to an increase in the crystal field splitting and low-spin state becomes preferable. The Co3+ ions are found to stay in the low-spin configuration for any x values.  相似文献   

12.
Er3+ electron spin resonance ESR and magnetic susceptibility have been studied in metallic lanthanum dihydride host. The ESR spectrum contains a single asymmetrical line with g-factor g = 6.68 ± 0.05 close to that expected for Γ7 as ground state. The experimental magnetic susceptibility was interpreted on the base of LLW cubic crystal field Hamiltonian. The best fit of the experimental data has been obtained for the following B4 and B6 crystal field parameters: B4 = ?5.2 × 10?3 K; B6 = 3.8 × 10?5 K which support the anionic-like character hydridic model of hydrogen atoms in this hydride.  相似文献   

13.
By Mössbauer absorption experiments the magnetic hyperfine splitting has been observed for the 2+ states of180W and182W in a tungsten iron alloy (3.6 at%W). Since theg-factor of the 2+ state of182W is known the measured splitting of the182W line could be used for the calibration of the magnetic hyperfine field and the measurement with180W gave then for the unknowng 2+-factor of180W: $$g_{2 + } (^{180} W) = 0.260 \pm 0.017.$$ By use of a WO3 absorber the electric quadrupole splittings in the same states were measured. The ratio of the quadrupole moments was derived $$\frac{{Q_{2 + } (^{180} W)}}{{Q_{2 + } (^{182} W)}} = 0.983 \pm 0.022.$$ This ratio is somewhat smaller, but more accurate than the weighted means of previous results and in disagreement with the theoretical prediction. A similar measurement with178Hf and180Hf and a HfO2 absorber gave $$\frac{{Q_{2 + } (^{178} Hf)}}{{Q_{2 + } (^{180} Hf)}} = 1.052 \pm 0.021.$$ This result is larger than the average of previous measurements and agrees with theory. The isomer shifts of the Mössbauer lines of180W and182W were measured for sources in a tantalum metal environment and for absorbers of metallic tungsten. Different signs were observed which indicate that the mean squared charge radius of the 2+ state of182W is larger than that of the ground state whereas for180W the ground state has the larger 〈r 2〉-value.  相似文献   

14.
The localized magnon mode in MnF2 : Co was studied by far infrared resonance techniques. The halfwidth at 8 K is 1 cm-1, about three times smaller than that obtained by other experimental methods. Therefore, accurate measurements of the temperature dependence are possible between 8 and 40 K. The temperature dependence of the effective g-factor is attributed to spin wave renormalization. The half width is magnetic field dependent at higher temperatures and can be approximated by a T2 law.  相似文献   

15.
Electron paramagnetic resonance (EPR) study of Cu2+ ions doped in diammonium hexaaqua magnesium sulphate single crystal over the temperature range of 4.2–320 K is reported. Copper enters the lattice substitutionally and is trapped at two magnetically equivalent sites. The spin Hamiltonian parameters are evaluated at 320, 300, 77, and 4.2 K. The angular variations of the resonance lines in three mutually perpendicular planes ab, bc* and c*a are used to determine principal g and A values. The observed spectra are fitted to a spin Hamiltonian of rhombic symmetry with parameters of Cu2+ at 77 and 4.2 K: g xx  = 2.089, g yy  = 2.112, g zz  = 2.437 (±0.002) and A xx  = 38, A yy  = 14, A zz  = 110 (±2) × 10?4 cm?1. The ground state wave function of Cu2+ ion in this lattice is determined. The g-factor anisotropy is calculated and compared with the experimental value. The optical absorption spectra of the crystal are also recorded at room temperature. With the help of assigned bands the crystal-field parameters (Dq, Ds and Dt) are evaluated. By correlating the optical and EPR data, the nature of bonding in the complex is discussed. The temperature dependence of the g values is explained to conclude the occurrence of both static and dynamic Jahn–Teller effects over the temperature range of investigation.  相似文献   

16.
Theg-factor of theJ π=21/2+ isomeric state in111In (T 1/2=13.3 ns) and of theJ π=6+ isomeric state in112Sn (T 1/2=13.7 ns) were measured using the spin rotation method. The result obtained for theJ π=21/2+ level in111In,g=+0.47 (2), indicates that this state has an almost pure ((πg 9/2)?1 νg 7/2 νd 5/2) shell model configuration. The experimental valueg=+0.04 (3) for theJ π=6+ isomer in112Sn agrees with the theoretical value calculated within the frame of the BCS model.  相似文献   

17.
The substitutional effect of Mo on the magnetic and transport properties of double exchange ferromagnets, La0.5Sr0.5Co1−x MoxO3 (0?x?0.2) has been investigated. Substitution of 10% Mo at the Co-site of La0.5Sr0.5CoO3 decreases the Curie temperature by ∼60 K than that of the parent compound and the long-range ferromagnetic ordering disappears for x?0.2. The Mo-doped samples, however, undergo a transition from the parent metallic state to the insulating state below Tc. The insulating state is found to obey Mott's variable range hopping of conduction. The effect of Mo substitution is attributed to the factors namely, (i) the dilution of magnetic Co sublattice, (ii) the reduction of Co4+/Co3+ ratio resulting in a reduced carrier concentration and (iii) disruption of the intermediate spin structure of Co, namely Co3+: t2g5eg1.  相似文献   

18.
《Infrared physics》1989,29(2-4):385-394
Infrared absorption (1.4–2μm) of KZn1−xCoxF3 (0⩽ x<0.15) at 4.2 K has been studied in a magnetic field (B⩽7 T). Large field-induced splittings were observed for Co2+-ion lines. Details of the cobalt concentration dependence of the absorptivity at B = 0 and at field are given along with the dependences on field direction and strength. Assignments are made of the observed Co2+ single-ion and pair transitions. The data has enabled the determination of the infrared (IR) transition g values.  相似文献   

19.
The optical band positions and spin-Hamiltonian parameters (g factors gg? and zero-field splitting D) for the trigonal Cr3+ centers in Y2Ti2O7 crystal are calculated from the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model. In the calculations, the contributions to spectral data from both the spin-orbit parameter of central dn ion and that of ligand ion are considered and the crystal field parameters used are estimated from the superposition model. The calculated results are in reasonable agreement with the experimental values. The defect structures of Cr3+ center is suggested.  相似文献   

20.
Theg-factor of the one millisecond isomer (first excited state at 801 keV) in self-conjugate46V was measured by the perturbed angular distribution method. The isomeric state was populated by the heavy ion reaction32S(16O,pn)46V and recoil implanted into a liquid metal. The result,g=+0.546(10) extends the known isoscalar moments to heavier nuclei and is in close agreement with all previously measured isoscalar moments in thef 7/2 shell. Theγ-ray angular distribution confirms the spin 3 assignment of the isomeric state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号