首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Results of synthesis, X-ray structure analysis, electron spin resonance, susceptibility, magnetization and specific heat measurements of powdered Cu(bmen)2Pd(CN)4 (,N-dimethyl-1,2-diaminoethane) are reported. Its structure is formed of quasi-linear chains of the [-Cu(bmen)2-NC-Ni(CN)2-CN-]n composition; these are interlinked by hydrogen bonds (HBs) leading to two-dimensional patterns. Upon magnetic, spectral and thermodynamic measurements the compound was identified as an S=1/2 Heisenberg antiferromagnet on a square lattice with due to the dominant role of HBs in creating a square network. The long-range ordering observed at 0.24 K is proposed to be of a Néel type. The possibility of tuning the exchange interactions in various directions is considered.  相似文献   

2.
Recently, we have discovered a new type of first order phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] (dto=C2O2S2), where the charge transfer transition between FeII and FeIII occurs reversibly. In order to elucidate the origin of this peculiar first order phase transition. Detailed information about the crystal structure is indispensable. We have synthesized the single crystal of (n-C3H7)4N[CoIIFeIII(dto)3] whose crystal structure is isomorphous to that of (n-C3H7)4N[FeIIFeIII(dto)3], and determined its detailed crystal structure. Crystal data: space group P63, a=b=10.044(2) Å, c=15.960(6) Å, α=β=90°, γ=120°, Z=2 (C18H28NS6O6FeCo). In this complex, we found a ferromagnetic transition at Tc=3.5 K. Moreover, on the basis of the crystal data of (n-C3H7)4N[CoIIFeIII(dto)3], we determined the crystal structure of (n-C3H7)4N[FeIIFeIII(dto)3] by simulation of powder X-ray diffraction results.  相似文献   

3.
Single crystals [N(CH3)4]2MnCl4 and [N(CH3)4]2CoCl4 were grown by the slow evaporation technique from the super-saturated solutions. The samples obtained were undergone the X-ray and spectroscopic studies. Absorption spectra in the paraelectric phase at T=303 K have been recorded using the Shimadzu 160A double beam automatic scanning spectrophotometers. On the basis of the exchange charge model and Racah theory the crystal field parameters and Racah parameters have been calculated; all absorption bands for both crystals were given an assignment.  相似文献   

4.
In attempt to characterise the magnetic ordering in the whole composition range of the Cd1−xZnxCr2Se4 system, various magnetic measurements were performed on both crystalline and polycrystalline samples with 0?x?1. The magnetic properties of the system are typical of a ferromagnet below x=0.4 and of a complex antiferromagnet one above x=0.6. In this work the intermediate region was carefully studied. The variations of both M(T) and χac at low fields suggest that transitions from ferromagnetic to Gabay–Toulouse ferromagnetic-spin-glass mixed phase at low temperature occur in the range 0.41?x?0.58. The high-temperature susceptibility measurements show that for the whole concentration range the system obeys Curie–Weiss laws. The results can be explained by the coexistence of competing interactions (ferromagnetic between nearest neighbours and antiferromagnetic between higher order neighbours) and disorder due to the random substitution between zinc and cadmium ions in the tetrahedral sites of the spinel lattice. An experimental magnetic phase diagram of the system is established.  相似文献   

5.
The critical parameters provide important information concerning the interaction mechanisms near the paramagnetic-to-ferromagnetic transition. In this paper, we present a thorough study for the critical behavior of La0.7A0.3(Mn1−xBx)O3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) polycrystalline samples near ferromagnetic-paramagnetic phase transition temperature by analyzing isothermal magnetization data. We have analyzed our dc-magnetization data near the transition temperature with the help of the modified Arrot plot, Kouvel-Fisher method. We have determined the critical temperature TC and the critical parameters β, γ and δ. With the values of TC, β and γ, we plot M×(1−T/TC)β vs. H×(1−T/TC)γ. All the data collapse on one of the two curves. This suggests that the data below and above TC obey scaling, following a single equation of state. Critical parameters for x=0 and xTi=0.05 samples are between those predicted for a 3D-Heisenberg model and mean-field theory and for xAl=0.05 samples the values obtained for the critical parameters are close to those predicted by the mean-field theory.  相似文献   

6.
Magnetic susceptibility, heat capacity and electrical resistivity measurements have been carried out on a new ruthenate, La2RuO5 (monoclinic, space group P21/c) which reveal that this compound is a magnetic semiconductor with a high magnetic ordering temperature of 170 K. The entropy associated with the magnetic transition is 8.3 J/mol K close to that expected for the low spin (S=1) state of Ru4+ ions. The low temperatures specific heat coefficient γ is found to be nearly zero consistent with the semiconducting nature of the compound. The magnetic ordering temperature of La2RuO5 is comparable to the highest known Curie temperature of another ruthenate, namely, metallic SrRuO3, and in both these compounds the nominal charge state of Ru is 4+.  相似文献   

7.
The magnetic and transport properties of a new cubic KSbO3-type ruthenate, (Ba1−xSrx)2Ru3O9 (x≈0.35), have been investigated. The crystal structure has a singular geometry in which ruthenium atoms form an ideal three-dimensional orthogonal dimer lattice. The magnetic susceptibility is Pauli-paramagnetic but exhibits an anomalous temperature dependence reminiscent of a gap-like behavior. The resistivity exhibits a metallic behavior, except for a rise at low temperature.  相似文献   

8.
Co3V 2O8 is a spin- 3/2 system on a Kagomé staircase and is known to undergo two magnetic phase transitions between 6 and 11 K. The H-T phase diagram of Co3V 2O8 derived by magnetization measurements on a single crystal is presented. Additionally both ordered magnetic structures were investigated by neutron powder diffraction experiments and solved using Bertaut’s macroscopic theory. For the ferromagnetic phase the magnetic moments of the Co2+ ions were found to be 1.5(3)μB and 2.7(1)μB at 3.5 K along the crystallographic a axis for the (4a) and (8e) sites, respectively. The antiferromagnetic phase exhibits a magnetic cell with a doubled b axis with respect to the nuclear one. The magnetic moments point along the a axis being 1.8(2)μB (4a) and 1.8(1)μB (8e) at 8 K.  相似文献   

9.
Hg2Os2O7, which has the cubic pyrochlore structure, remains metallic down to the liquid helium temperature unlike its isostructural counterpart Cd2Os2O7, which shows metal-insulator transition at 226 K. Magnetization and heat capacity data for Hg2Os2O7 are presented. The magnetic anomaly at TN=88 K shares many characteristics in common with the metal-insulator transition in Cd2Os2O7, though Hg2Os2O7 remains metallic below TN. The heat capacity Cp shows no or very little change in the magnetic entropy around TN, supporting the view that there is no long-range ordering of localized spins. The measured value of electronic heat-capacity coefficient γ=21 mJ K−2mol−1 is comparable to the value obtained from band-structure calculation on Cd2Os2O7, suggesting that mass-enhancement is small in Hg2Os2O7. There is a pronounced peak in Cp/T3 at 13.1 K, which corresponds to a peak in the phonon density of states at 40 cm−1.  相似文献   

10.
The electrical and magnetoresistant properties of La0.67(Ca0.65Ba0.35)0.33MnO3/Agx (abbreviated by LCBMO/Agx) have been studied. The results show that Ag addition causes a decrease of resistivity dramatically and especially induces a large enhancement of room temperature magnetoresistance (MR). The room temperature MR ratio for x=0.27 sample in 10 kOe magnetic field is 41%, almost 20 times larger than that for x=0 sample. This enhancement is related to that the Curie temperature (Tc) of the sample is near room temperature, as well as the significant reduction of resistivity. The good fits of experimental results for x=0.27 sample to Brillouin function indicate that the MR behavior in the Ag added LCBMO is induced by the spin-dependent hopping of the electrons between the spin clusters, which is an intrinsic property of the CMR materials.  相似文献   

11.
Ca2+-doping effects were studied on the N-type ferrimagnet of NdVO3. The chemical pressures by Ca2+-doping induced lowering of ferrimagnetic transition temperature Tc and compensation temperature θc, resulting in the phase transition from N- to P-type ferrimagnetic phase. In the N-phase, spontaneous magnetization Msp becomes zero at finite temperature θc and in the P-phase, Msp is positive in whole temperature range. It was revealed that NdVO3 and Ca0.1Nd0.9VO3 located in the N-phase and Ca0.2Nd0.8VO3 in the P-phase. This N→P transition by the chemical pressure was discussed by the intra- and inter-sublattice exchange integrals estimated from the molecular field approximation.  相似文献   

12.
We used optical birefringence, X-ray and neutron diffraction methods with single crystals to study the structural phase transitions of the perowskite-type layer structures of (CH3NH3)2MeCl4 with Me=Mn, Fe. The Mn-compound shows the following structural transitions at 394 K — a continuous order-disorder phase transition from tetragonal symmetry I4mmm to orthorhombic space group Abma (Cmca in reference 10); at 257 K — a discontinuous transition to a second tetragonal modification; at 95 K — a discontinuous transition to a monoclinic phase. For the Fe-compound the corresponding transition temperatures are 328 K and 231 K, respectively. A low temperature monoclinic phase could not be observed. The lattice parameters of the different modifications were determined as a function of temperature. The temperature dependent course of the order parameter has been investigated for the order—disorder transition. For both compounds, all the methods used gave the same value for the critical exponent of β = 0.315.  相似文献   

13.
We have measured the specific heat of crystals of (Ca1−xSrx)3Ru2O7 using ac- and relaxation-time calorimetry. Special emphasis was placed on the characterization of the Néel () and structural () phase transitions in the pure, x=0 material. While the latter is believed to be first order, detailed measurements under different experimental conditions suggest that all the latent heat (with L∼0.3R) is being captured in a broadened peak in the effective heat capacity. The specific heat has a mean-field-like step at TN, but its magnitude () is too large to be associated with a conventional itinerant electron (e.g. spin-density-wave) antiferromagnetic transition, while its entropy is too small to be associated with the full ordering of localized spins. The TN transition broadens with Sr substitution while its magnitude decreases slowly. On the other hand, the entropy change associated with the Tc transition decreases rapidly with Sr substitution, and is not observable for our x=0.58 sample.  相似文献   

14.
The electrical transport and magnetic properties of high Bi doped (La0.73Bi0.27)0.67Ca0.33MnO3 are studied at the temperature and magnetic field ranges from 10 to 300 K and 0 to 3 T. Significant temperature and magnetic field hystereses are observed in both resistivity and magnetization measurements. Meanwhile, an enhanced magnetoresistance effect, within a wide temperature window, is obtained in the (La0.73Bi0.27)0.67Ca0.33MnO3. The hysteresis and enhanced magnetoresistance are discussed based on an inhomogeneous metastable structure related to the Bi dopant.  相似文献   

15.
At internal magnetic fields much smaller than the spontaneous magnetizationM s (T) but large compared to the weak anisotropy field,H A 20 Oe, the internal susceptibility measured parallel toM by NMR and low frequency ac-susceptibility is observed to diverge asH –1/2 for temperatures up to 0.998T c . Numerous theoretical work predicted suchH –1/2-singularity to arise from massless Goldstone-modes associated with the perpendicular susceptibility of a Heisenberg system. The temperature variation of the amplitude, z ·H –1/2, agrees with the results of the spin-wave and more general hydrodynamic theories, while the magnitude reveals the suppression of one Goldstone polarization by the dipoledipole interaction. In contrast to a previous renormalization-group estimate, a crossover to thermal critical behavior nearT c is not observed.  相似文献   

16.
The ground state of the solid solution of the two spin gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H NMR. The existence of a magnetic ordering in the sample with the Cl-content x=0.85 was clearly demonstrated by a drastic splitting in a resonance line at low temperatures below TN=13.5 K. The observed NMR spectra in the ordered state was qualitatively consistent with the simple antiferromagnetic state.  相似文献   

17.
We have studied the magnetic excitations of (CH3NH3)2MnCl4 in the antiferromagnetic and in the spin-flop regimes by means of magnetic resonance in the millimeter range (60–100 GHz). Rather odd line shapes of the resonance absorption line for narrow lines are explained as interference effects between the resonant and the non-resonant circular wave in the sample. For the antiferromagnetic resonance (AFMR) and for the paramagnetic resonance (EPR, above the Néel temperature), we have also studied the line width as a function of temperature.  相似文献   

18.
Antiferromagnetic resonance of (C2H5NH3)2CuCl4 was studied at 1 GHz region. Characteristics of a weak exchange interaction with a strong anisotropy were observed.  相似文献   

19.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

20.
Gamma irradiated [(CH3)4N]InCl4 and [(CH3)4N]2CdCl4 single crystals were investigated by electron paramagnetic resonance at ambient temperature, and it has been found that both compounds indicate the existence of (CH3)3N+ radicals. The g factors were found to be isotropic, and the hyperfine constant for H atoms was measured as 2.86 mT and is isotropic for this radical in these substances. The hyperfine coupling constant of the N nucleus with the hole in (CH3)3N+ in [(CH3)4N]InCl4 was found to be anisotropic with the Azz=2.92, Ayy=1.62 and Axx=1.40 mT. From these, it has been revealed that the C3v-axis of (CH3)3N+ radical performs rotational or jumping reorientational motions around a fixed axis, in addition to the rotations of protons in CH3 groups and the rotational motions of CH3 groups around the C3v-axis of the radical. The g, and the hyperfine coupling factors of the N nucleus were isotropic in (CH3)3N+ in [(CH3)4N]2CdCl4. This indicates the motional behaviour of the radical in this compound is as in a liquid. This isotropic behaviour of the hyperfine coupling constants was found to be same until the attainable lowest temperature of 113 K in our laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号