首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure, nonlinear properties, and stability against DC accelerated aging stress of ZnO-Pr6O11-CoO-based varistors doped with Er2O3 was investigated at sintering temperatures of 1300 and 1350 °C. The addition of Er2O3 to ZnO-Pr6O11-CoO-based varistor greatly improved the nonlinear properties and the varistor sintered at 1300 °C exhibited good nonlinearity, with nonlinear exponent of 52.8 and leakage current of 9.8 μA The increase of sintering temperature deteriorated the nonlinear properties, whereas it greatly improved the stability.  相似文献   

2.
The effect of Al2O3 on the electrical properties of ZnO-Pr6O11-based ceramics is investigated in this work. The average grain size of ZnO increased as the Al2O3 content increased from 10.3 to 13.5 μm. It was found that a sample doped with Al2O3 of 0.005 mol% showed the highest nonlinear current-voltage characteristics with a nonlinear exponent of 43.8 and a leakage current of 0.66 μA. When the Al2O3 content was increased, the donor concentration was increased from 0.51×1018/cm3 to 1.59×1018/cm3, but the barrier height was decreased from 1.01 to 0.87 eV. The best electrical stability against aging stress was obtained by doping Al2O3 of 0.001 mol%.  相似文献   

3.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

4.
LiBa2B5O10:RE3+ (RE=Dy, Tb and Tm) was synthesized by the method of high-temperature solid-state reaction and the thermoluminescence (TL) properties of the samples under the irradiation of the γ-ray were studied. The result showed that Dy3+ ion was the most efficient activator. When the concentration of Dy3+ was 2 mol%, LiBa2B5O10:Dy3+ exhibited a maximum TL output. The kinetic parameter of LiBa2B5O10:0.02Dy was estimated by the peak shape method, for which the average activation energy was 0.757 eV and the frequency factor was 1.50×107 s−1. By the three-dimensional (3D) TL spectrum, the TL of the sample was contributed to the characteristic f-f transition of Dy3+. The dose-response of LiBa2B5O10:0.02Dy to γ-ray was linear in the range from 1 to 1000 mGy. In addition, the decay of the TL intensity of LiBa2B5O10:0.02Dy was also investigated.  相似文献   

5.
Two-dimensional crystal curved lines consisting of the nonlinear optical SmxBi1−xBO3 phase are fabricated at the surface of 8Sm2O3·37Bi2O3·55B2O3 glass by continuous wave Nd:YAG laser (wavelength: 1064 nm) irradiation (samarium atom heat processing) with a power of ∼0.9 W and a laser scanning speed of 5 μm/s. The curved lines with bending angles of 0-90° or with sine-shapes are written by just changing the laser scanning direction. The polarized micro-Raman scattering spectra for the line after bending are the same as those for the line before bending, indicating that the crystal plane of SmxBi1−xBO3 crystals to the crystal growth direction might be maintained even after the change in the laser scanning direction. It is found from laser scanning microscope observations that the crystal lines at the surface are swelled out smoothly, giving a height of about 10 μm.  相似文献   

6.
Physical and electrical properties of sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate are investigated. The as-deposited films and interfacial layer formation have been analyzed by using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). It is found that directly deposited Y2O3 on n-GaAs exhibits excellent electrical properties with low frequency dispersion (<5%), hysteresis voltage (0.24 V), and interface trap density (3 × 1012 eV−1 cm−2). The results show that the deposition of Y2O3 on n-GaAs can be an effective way to improve the interface quality by the suppression on native oxides formation, especially arsenic oxide which causes Fermi level pinning at high-k/GaAs interface. The Al/Y2O3/n-GaAs stack with an equivalent oxide thickness (EOT) of 2.1 nm shows a leakage current density of 3.6 × 10−6 A cm−2 at a VFB of 1 V. While the low-field leakage current conduction mechanism has been found to be dominated by the Schottky emission, Poole-Frenkel emission takes over at high electric fields. The energy band alignment of Y2O3 films on n-GaAs substrate is extracted from detailed XPS measurements. The valence and conduction band offsets at Y2O3/n-GaAs interfaces are found to be 2.14 and 2.21 eV, respectively.  相似文献   

7.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

8.
Sandwich-structure Al2O3/HfO2/Al2O3 gate dielectric films were grown on ultra-thin silicon-on-insulator (SOI) substrates by vacuum electron beam evaporation (EB-PVD) method. AFM and TEM observations showed that the films remained amorphous even after post-annealing treatment at 950 °C with smooth surface and clean silicon interface. EDX- and XPS-analysis results revealed no silicate or silicide at the silicon interface. The equivalent oxide thickness was 3 nm and the dielectric constant was around 7.2, as determined by electrical measurements. A fixed charge density of 3 × 1010 cm−2 and a leakage current of 5 × 10−7A/cm2 at 2 V gate bias were achieved for Au/gate stack /Si/SiO2/Si/Au MIS capacitors. Post-annealing treatment was found to effectively reduce trap density, but increase in annealing temperature did not made any significant difference in the electrical performance.  相似文献   

9.
The ternary MoO3-La2O3-B2O3 glasses containing a large amount of MoO3 (10-50 mol%) are prepared, and their structure and crystallization behavior are examined from the Raman scattering spectrum measurements and X-ray diffraction analyses. It is found that the glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing MoO3 content. It is suggested that the main coordination state of Mo6+ ions in the glasses is isolated (MoO4)2− tetrahedral units giving strong Raman bands at 830-860 and 930 cm−1. It is found that the crystalline phases in the crystallized glasses are mainly LaMoBO6 and LaB3O6, and the main crystallization mechanism in MoO3-La2O3-B2O3 glasses is surface crystallization. LaMoBO6 crystals are found to give strong Raman bands at 810-830 and ∼910 cm−1.  相似文献   

10.
The ultrafast nonlinear optical properties of Bi2O3-B2O3-SiO2 oxide glass were investigated using a femtosecond optical Kerr shutter (OKS) at wavelength of 800 nm. The nonlinear response time of this Bi2O3-doped glass was measured to be <90 fs. The nonlinear refractive-index n2 was estimated to be 1.6 × 10−14 cm2/W. Measurements for the dependence of Kerr signals on the polarization angle between the pump and probe beams showed that the Kerr signals induced by 30-fs pulse laser arose mainly from the photoinduced birefringence effect.  相似文献   

11.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

12.
The solid solution behavior of the Ni(Fe1−nCrn)2O4 spinel binary is investigated in the temperature range 400-1200 °C. Non-ideal solution behavior, as exhibited by non-linear changes in lattice parameter with changes in n, is observed in a series of single-phase solids air-cooled from 1200 °C. Air-annealing for 1 year at 600 °C resulted in partial phase separation in a spinel binary having n=0.5. Spinel crystals grown from NiO, Fe2O3 and Cr2O3 reactants, mixed to give NiCrFeO4, by Ostwald ripening in a molten salt solvent, exhibited single-phase stability down to about 750 °C (the estimated consolute solution temperature, Tcs). A solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n values of 0.2 and 0.7 at 300 °C. The extrapolated solvus is shown to be consistent with that predicted using a primitive regular solution model in which free energies of mixing are determined entirely from changes in configurational entropy at room temperature.  相似文献   

13.
NdFeNbB with the additions of Dy2O3 and Sn permanent magnets have been attained by means of powder-blending technique, and their magnetic properties, temperature performance and microstructure were studied in this paper. The addition of just 2.0 wt% Dy2O3 or 0.3 wt% Sn proved to be very effective in improving the permanent magnetic properties of NdFeNbB magnets. Dy2O3 additions result in the increase in the Hci and temperature dependence due to the increase of Tc, formation of (NdDy)-rich phase and grain refinement of Φ phase. This improvement of the coercivity stability of the magnets from the addition of Sn is attributed to the smoothing effect of the Sn addition at the grain boundaries. The magnetic properties, the temperature dependence and Curie temperature of NdFeNbB with Dy2O3 and Sn combined addition were found to be considerably improved. From the X-ray diffraction, SEM-EDAX studies and the thermo-magnetic study, the improved properties due to the solution of Dy and Sn to the Φ phase, the reduced Neff and the smaller Φ phase.  相似文献   

14.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

15.
In the present paper, phosphors with the composition Y3−x−yAl5O12:Bi3+x, Dy3+y were synthesized with solid state reactions. The luminescence properties of Bi3+ and Dy3+ in Y3Al5O12(YAG) and the energy transfer from Bi3+ to Dy3+ were investigated in detail. Bi3+ in YAG emits one broad band peaking at 304 nm which can be ascribed to the transition from excited states 3P0, 1 to ground state 1S0. Dy3+ in YAG emits two groups of peaks around 484 and 583 nm, respectively, which can be ascribed to the transitions from excited state 4F9/2 to ground states 6H15/2 and 6H13/2. The co-doping of Bi3+ enhances the luminescent intensity of Dy3+ by ∼7 times because Bi3+ can transfer the absorbed energy to Dy3+ efficiently. The mechanism of energy transfer was also discussed.  相似文献   

16.
This paper describes the structural properties and electrical characteristics of thin Dy2O3 dielectrics deposited on silicon substrates by means of reactive sputtering. The structural and morphological features of these films after postdeposition annealing were studied by X-ray diffraction and X-ray photoelectron spectroscopy. It is found that Dy2O3 dielectrics annealed at 700 °C exhibit a thinner capacitance equivalent thickness and better electrical properties, including the interface trap density and the hysteresis in the capacitance-voltage curves. Under constant current stress, the Weibull slope of the charge-to-breakdown of the 700 °C-annealed films is about 1.6. These results are attributed to the formation of well-crystallized Dy2O3 structure and the reduction of the interfacial SiO2 layer.  相似文献   

17.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

18.
The composite with the mole ratio of WO3 to Co2O3 being 3:1 was fabricated by the conventional solid-state reaction process. The electrical properties of the sample were measured at various ambient temperatures in a low electric field (E<200 V/mm). The results demonstrated that the electrical behavior of the composite was sensitive to the variation of the ambient temperature. As the temperature increased, the composite displayed negative differential resistance characteristic within the temperature range of about 50-130 °C. When the temperature was between 140 and 300 °C the composite exhibited sublinear electrical behavior where current rose more weakly than voltage, which is sharply unlike those in varistors. An obviously superlinear property, exploited in varistors, was observed at the temperature of 500 °C. The present results also suggested that the composite did not obey the Arrhenius law. The current-voltage (I-V) properties of the composite could be explained by the double p-n junction and Joule heat.  相似文献   

19.
Amorphous Lu2O3 high-k gate dielectrics were grown directly on n-type (100) Si substrates by the pulsed laser deposition (PLD) technique. High-resolution transmission electron microscope (HRTEM) observation illustrated that the Lu2O3 film has amorphous structure and the interface with Si substrate is free from amorphous SiO2. An equivalent oxide thickness (EOT) of 1.1 nm with a leakage current density of 2.6×10−5 A/cm2 at 1 V accumulation bias was obtained for 4.5 nm thick Lu2O3 thin film deposited at room temperature followed by post-deposition anneal (PDA) at 600 °C in oxygen ambient. The effects of PDA process and light illumination were studied by capacitance-voltage (C-V) and current density-voltage (J-V) measurements. It was proposed that the net fixed charge density and leakage current density could be altered significantly depending on the post-annealing conditions and the capability of traps to trap and release charges.  相似文献   

20.
Glass samples of composition xAl2O3-20PbO-(80−x)B2O3 and xWO3-xAl2O3-20PbO-(80−2x)B2O3 with x varying from 0% to 10% mole fraction are prepared by melt quench technique. The optical band gap decreases (from 3.21 to 2.37 eV) more for WO3-Al2O3-PbO-B2O3 glasses with an addition of WO3 content. The FTIR spectral studies have pointed out the conversion of structural units of BO3 to BO4 and WO4 to WO6 in these glasses. The increase in density from 4.51 to 5.80 g cm−3 for WO3-Al2O3-PbO-B2O3 glasses is observed with an increase in WO3 content. This is observed that the atomic structure changes more with the incorporation of WO3. This is due to the formation of WO6, WO4 and BO4 units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号