首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>The structural un-uniformity of μc-Si:H films prepared using a very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy,spectroscopic ellipsometer and atomic force microscopy.It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH_4 and the amorphous induction of glass surface during the initial ignition process,and growth of the incubation layer can be suppressed and uniformμc-Si:H phase is generated by the application of delayed initial SiH_4 density and silane profiling methods.  相似文献   

2.
张海龙  刘丰珍  朱美芳  刘金龙 《中国物理 B》2012,21(1):15203-015203
The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and the microstructures of hydrogenated microcrystalline Si (μc-Si:H) thin films are investigated. The plasma ignition condition is modified by varying the ratio of SiH4 to H2 (RH). For plasma ignited with a constant gas ratio, the time-resolved optical emission spectroscopy presents a low value of the emission intensity ratio of Hα to SiH* (I/ISiH*) at the initial stage, which leads to a thick amorphous incubation layer. For the ignition condition with a profiling RH, the higher I/ISiH* values are realized. By optimizing the RH modulation, a uniform crystallinity along the growth direction and a denser μ c-Si:H film can be obtained. However, an excessively high I/ISiH* may damage the interface properties, which is indicated by capacitance-voltage (C-V) measurements. Well controlling the ignition condition is critically important for the applications of Si thin films.  相似文献   

3.
We found the decreases of amorphous incubation volume from Raman spectra and surface roughness from AFM in hydrogenated microcrystalline silicon (μc-Si:H) films deposited with a pre-hydrogen glow discharge. The above phenomena are attributed to the increase in the nuclei density as observed by AFM measurements. Substrate surface morphology of eagle2000 glass modified by wet etching also has a positive effect on the nucleation and crystalline formation. In addition, μc-Si:H doped layer is also beneficial for decreasing the amorphous incubation layer thickness because of surface roughness and crystallinity in the μc-Si:H doped layer.  相似文献   

4.
Conductivity of photo-CVD microcrystalline silicon (c-Si:H) in wide range of dopant gas concentration (10–53/SiH4, B2H6/SiH4<10–2) is investigated. As compared with a-Si:H, the conductivity of the film is improved more than two orders of magnitude by microcrystallization for a wide range of dopant concentration at a deposition temperature of as low as 150°C. This indicates the suitability of photo-CVD for low temperature processing. A conductivity minimum is found at a doping ratio of about B2H6/SiH4=1×10–5.  相似文献   

5.
Fully microcrystalline silicon, μc-Si, thin films have been deposited on corning glass by plasma enhanced chemical vapor deposition (PECVD) using SiH4-H2. The effects of the surface treatment and of the deposition temperature on microstructure of μc-Si films are investigated by “in situ” laser reflectance interferometry (LRI), “ex situ” spectroscopic ellipsometry (SE) and Raman spectroscopy. LRI indicated the existence of a “crystalline seeding time”, which is indicative of the crystallite nucleation, and depends on substrate treatments. Longer “crystalline seeding time” results in a lower density of crystalline nuclei, which grow laterally, yielding to complete suppression of the amorphous incubation layer and to growth of very dense, fully crystalline layer at a growth temperature as low as 120 °C.  相似文献   

6.
We exposed a freshly deposited boron-doped, hydrogenated amorphous silicon (a-Si:H) layer to hydrogen plasma under conditions of chemical transport. In situ spectroscopic ellipsometry measurements revealed that atomic hydrogen impinging on the film surface behaves differently before and after crystallization. First, the plasma exposure increases hydrogen solubility in the a-Si:H network leading to the formation of a hydrogen-rich subsurface layer. Then, once the crystallization process engages, the excess hydrogen starts to leave the sample. We have attributed this unusual evolution of the excess hydrogen to the grown hydrogenated microcrystalline (μc-Si:H) layer, which gradually prevents the atomic hydrogen from the plasma reaching the μc-Si:H/a-Si:H interface. Consequently, hydrogen solubility, initially increased by the hydrogen plasma, recovers the initial value of an untreated a-Si:H material. To support the theory that the outdiffusion is a consequence and not the cause of the μc-Si:H layer growth, we solved the combined diffusion and trapping equations, which govern hydrogen diffusion into the sample, using appropriate approximations and a specific boundary condition explaining the lack of hydrogen injection during μc-Si:H layer growth.  相似文献   

7.
非晶/微晶相变域硅薄膜及其太阳能电池   总被引:1,自引:0,他引:1       下载免费PDF全文
采用甚高频等离子体增强化学气相沉积(VHF-PECVD)法,成功制备出从非晶到微晶过渡区 域的硅薄膜. 样品的微结构、光电特性及光致变化的测量结果表明这些处于相变域的硅薄膜 兼具非晶硅优良的光电性质和微晶硅的稳定性. 用这种两相结构的材料作为本征层制备了p- i-n太阳能电池,并测量了其稳定性. 结果在AM15(100mW/cm2) 的光强下曝光 800—5000min后,开路电压略有升高,转换效率仅衰退了29%. 关键词: 相变域硅薄膜 光电特性 太阳能电池  相似文献   

8.
郭艳青  黄锐  宋捷  王祥  宋超  张奕雄 《中国物理 B》2012,21(6):66106-066106
Amorphous-layer-free nanocrystalline silicon films were prepared by a very high frequency plasma enhanced chemical vapor deposition(PECVD) technique using hydrogen-diluted SiH4 at 250 C.The dependence of the crystallinity of the film on the hydrogen dilution ratio and the film thickness was investigated.Raman spectra show that the thickness of the initial amorphous incubation layer on silicon oxide gradually decreases with increasing hydrogen dilution ratio.High-resolution transmission electron microscopy reveals that the initial amorphous incubation layer can be completely eliminated at a hydrogen dilution ratio of 98%,which is lower than that needed for the growth of amorphous-layer-free nanocrystalline silicon using an excitation frequency of 13.56 MHz.More studies on the microstructure evolution of the initial amorphous incubation layer with hydrogen dilution ratios were performed using Fourier-transform infrared spectroscopy.It is suggested that the high hydrogen dilution,as well as the higher plasma excitation frequency,plays an important role in the formation of amorphous-layer-free nanocrystalline silicon films.  相似文献   

9.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

10.
VHF等离子体光发射谱(OES)的在线监测   总被引:4,自引:0,他引:4       下载免费PDF全文
采用光发射谱(OES)测量技术,对不同制备条件下的甚高频(VHF)等离子体辉光进行了在线监 测.实验表明,VHF等离子体中特征发光峰(Si,SiH,Hα,H*β 等)的强度较常规的射 频(RF)等离子体明显增强,并且在制备μc-Si:H的工艺条件下(H稀释度R(H2/S iH4)=23 ),随激发频率的增加而增大,这些发光峰的变化趋势与材料沉积速率的变化规律较相似.Si H峰等的强度随气压的变化则因硅烷H稀释度及功率的不同而异:高H稀释(R=23)时,SiH峰强 度在低辉光功率下随反应气压的增大单调下降,在高辉光功率下随气压的变化呈现类高斯规 律;低H稀释(R=5.7)时, SiH峰随气压的变化基本上是单调下降的,下降速率也与功率有 关,这些结果表明,VHF-PECVD制备μc-Si:H和a-Si:H的反应动力学过程存在较大差异.此 外,随着激发功率的增大,Si,SiH峰都先迅速增大然后趋于饱和,并且随着H稀释率的增大 ,将更快呈现饱和现象.通过对OES结果的分析与讨论可知,VHF-PECVD技术沉积硅基薄膜可 以有效提高沉积速率,而且,硅基薄膜的沉积速率的进一步提高需要综合考虑H稀释度、气 压和功率等的匹配与优化. 关键词: 甚高频等离子体化学气相沉积 氢化硅薄膜 光发射谱  相似文献   

11.
李天微  刘丰珍  朱美芳 《物理学报》2011,60(1):18103-018103
采用射频(rf)激发,在热丝化学气相沉积(HWCVD)制备微晶硅薄膜的过程中产生发光基元,测量了rf激发HWCVD (rf-HWCVD)的光发射谱,比较了相同工艺条件下rf-HWCVD和等离子体增强CVD(PECVD)的光发射谱,分析了rf功率、热丝温度和沉积气压对rf-HWCVD光发射谱的影响.结果表明,在射频功率<0.1W/cm2时,rf-HWCVD发射光谱反映了HWCVD高的气体分解效率和高浓度原子氢的特点,能够解释气压变化与微晶硅薄膜微结构的关系,是研究HWCVD气相过程的有 关键词: HWCVD OES 微晶硅  相似文献   

12.
Intrinsic hydrogenated microcrystalline silicon (\muc-Si:H) films have been prepared by hot-wire-assisted microwave electron-cyclotron-resonance chemical vapour deposition (HW-MWECR-CVD) under different deposition conditions. Fourier-transform infrared spectra and Raman spectra were measured. Optical band gap was determined by Tauc plots, and experiments of photo-induced degradation were performed. It was observed that hydrogen dilution plays a more essential role than substrate temperature in microcrystalline transformation at low temperatures. Crystalline volume fraction and mean grain size in the films increase with the dilution ratio (R=H2/(H2+SiH4)). With the rise of crystallinity in the films, the optical band gap tends to become narrower while the hydrogen content and photo-induced degradation decrease dramatically. The samples, were identified as \mu c-Si:H films, by calculating the optical band gap. It is considered that hydrogen dilution has an effect on reducing the crystallization activation energy of the material, which promotes the heterogeneous solid-state phase transition characterized by the Johnson--Mehl--Avrami (JMA) equation. The films with the needed structure can be prepared by balancing deposition and crystallization through controlling process parameters.  相似文献   

13.
Hydrogenated microcrystalline silicon films have been prepared by plasma-enhanced chemical vapor deposition technique using silane diluted in H2 or H2 + Ar. The microstructures for silicon films have been evaluated by Raman scattering spectroscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. Optical characterization has been done by UV-vis spectroscopy. It is found that the addition of Ar in diluent gases efficiently improves the deposition rate and crystallinity due to an enhanced dissociation of the source gas and the energy of deexcitation of Ar* released within the growth zone. Meanwhile, the enhanced crystallinity and the reducing of hydrogen ion bombardment with increasing Ar dilution lead to the polymerization and also a bad passivation of the hydrogen which cause the widening of the optical gap and increase of defect states in the μc-Si films. The absorption coefficient and dark conductivity are found to decrease basically with increasing Ar dilution corresponding to the widening optical gap and more defects. That the activation energy increases with increasing Ar dilution or decreasing hydrogen dilution is due to the fact that more defect states lead to a pulling down of the Fermi level.  相似文献   

14.
Hydrogenated amorphous silicon carbon nitride (a-SiCN:H) thin films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH4, CH4, NH3 and H2 as precursors. The effects of the H2 dilution on structural and chemical bonding of a-SiCN:H has been investigated by Raman and X-ray photoelectron spectroscopy (XPS). Increasing the H2 flow rate in the precursor gas more carbon is introduced into the a-SiCN:H network resulting in decrease of silicon content in the film from 41 at.% to 28.8 at.% and sp2 carbon cluster increases when H2 flow rate is increased from 0 to 20 sccm.  相似文献   

15.
张磊  沈鸿烈  岳之浩  江丰  吴天如  潘园园 《中国物理 B》2013,22(1):16803-016803
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot-wire chemical vapour deposition. The effect of the doping concentration of emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.  相似文献   

16.
用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
对以SiH4/H2及SiCl4/H2为源气体、采用 等离子体增强化学气相沉积技术制备的非晶硅薄膜和多晶硅薄膜进行了光照稳定性的研究.实验表明,制备的多晶硅薄膜并没有出现 非晶硅中的光致衰减现象,其光电导、暗电导在光照过程中没有下降反而有所上升且电导率 变化快慢受氢稀释度的制约.多晶硅薄膜的光照稳定性可能来源于高的晶化度及Cl元素的存在. 关键词: 多晶硅薄膜 稳恒光电导效应 晶界 光致衰退效应  相似文献   

17.
We report results obtained from FTIR and TEM measurements carried out on silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) from silane diluted with hydrogen. The hydrogen content, the microstructure factor, the mass density and the volume per Si-H vibrating dipoles were determined as a function of the hydrogen dilution. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (μc-Si:H). With increasing dilution the transition from amorphous to microcrystalline phase appears faster and the average mass density of the films decreases. The μc-Si:H films are mixed-phase void-rich materials with changing triphasic volume fractions of crystalline and amorphous phases and voids. Different bonding configurations of vibrating Si-H dipoles were observed in the a-Si:H and μc-Si:H. The bonding of hydrogen to silicon in the void- and vacancy-dominated mechanisms of network formation is discussed.  相似文献   

18.
4 and disilane Si2H6 induced by continuous wave CO2 laser irradiation has been investigated under the conditions of chemical vapor deposition (CVD) of amorphous hydrogenated silicon a-Si:H. At the very position of depositing the thin film the stationary chemical composition of the processing gas is probed in situ by an effusive molecular beam which passes through a differential pumping stage into a quadrupole mass spectrometer (QMS). With SiH4 as educt and SF6 as a sensitizer, SiH4 and Si2H6 are found in the processing gas while Si3H8 or higher silanes are lacking. Si2H6 and SF6 lead to SiH4, Si2H6, and Si3H8, but higher silanes are missing. The experimentally determined composition of the processing gas is semi-quantitatively reproduced by model calculations based on the assumption of stationary local equilibrium conditions and applying thermodynamic and spectroscopic data (molecular statistics). The mass balance of the processing gas entering and leaving the CVD chamber states an atomic ratio Si:H of 1:2 for the gas phase species forming the solid deposit on the reactor walls. This finding together with theoretical considerations indicates the intermediate Si2H4 to be the dominating gas phase species forming the a-Si:H thin films. Received: 17 July 1998/Accepted: 20 July 1998  相似文献   

19.
Hydrogenated silicon (Si:H) film was grown by radio frequency plasma enhanced chemical vapor deposition (PECVD) method. The transition between hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) was characterized by X-ray diffraction analysis. A semiconductor system was used to measure low frequency noise (1/f noise) and random telegraph switching noise of Si:H films. The results show that the 1/f noise of μc-Si:H is 4 orders of magnitude lower than that of a-Si:H and no RTS noise was found in both films. It also shows that using μc-Si:H instead of a-Si:H film as a sensing layer will enable the development of high performance uncooled microbolometer.  相似文献   

20.

The effect of the dilution of silane and nitrogen with hydrogen on the optical properties of hydrogenated amorphous silicon-nitrogen films prepared by plasma deposition has been investigated as functions of the gas-volume ratio γ (= ([SiH4] + [N2])/([SiH4] + [N2] + [H2]) and the substrate temperature. The prepared films are characterized by the values of the deposition rate, the optical gap, the Urbach energy, the defect density, the integrated infrared absorption intensity and the refractive index, and by correlations between these parameters and the type of hydrogen- and nitrogen-bonding configurations estimated from infrared absorption spectra. The hydrogen dilution effect is discussed in terms of the above and compared with that in hydrogenated amorphous silicon reported in a previous paper by the present authors. It is pointed out that nitrogen atoms incorporated into the silicon network cause more disorder than incorporated hydrogen atoms, from the γ dependence of the Urbach energy and the integrated infrared intensities associated with the hydrogen and nitrogen bondings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号