首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic-field-induced phase transitions in the two-dimensional electron system in a AlGaAs/InGaAs/GaAs heterostructure are studied. Two kinds of magnetic-field-induced phase transitions, plateau-plateau (P-P) and insulator-quantum Hall conductor (I-QH) transitions, are observed in the integer quantum Hall effect regime at high magnetic fields. In the P-P transition, both the semicircle law and the universality of critical conductivities are broken and we do not observe the universal scaling. However, the P-P transition can still be mapped to the I-QH transition by the Landau-level addition transformation, and as the temperature decreases the critical points of these two transitions appear at the same temperature. Our observations indicate that the equivalence between P-P and I-QH transitions can be found by the suitable analysis even when some expected universal properties are invalid.  相似文献   

2.
Velocity correlation functions in the time domain offer a new approach to the dissipative conductivity in the quantum Hall effect at half-filled Landau bands. We describe two methods of calculating these functions directly by wave packet propagation techniques. We address the question whether quantum effects modify the high field diffusion described within the semiclassical percolation picture of the QHE. We investigate a number of random potentials with finite correlation length. Coupling to higher Landau levels leads to damped cyclotron oscillations in the velocity correlation. Besides that, we observe a long time tail (t)t with 2.3 for all potential ranges investigated. Within the statistical uncertainty and the time interval considered, this power law is consistent with the semiclassical result obtained by averaging over all cluster sizes. Our findings imply detectable deviations from Drude's law for the AC conductivity.  相似文献   

3.
The Hall current flowing across an arbitrary curve connecting any two points selected in a high mobility, dissipation free, integer quantum Hall system shows quantised nature with respect to the potential difference between the two points. The Hall conductance can therefore be defined between any two points in the sample. For a given system, the behaviour of this Hall conductance depends on the potential difference between the two selected points only. The overall quantum Hall behaviour can be derived in a special case when the two points are selected at the Hall contacts.  相似文献   

4.
The effects of interaction between a thick In layer and heat-treated GaAs at 570°C are studied with Scanning Electron Microscopy (SEM), Secondary Ion Mass Spectrometry (SIMS), Rutherford Backscattering Spectrometry (RBS), X-Ray Diffraction (XRD) and Nomarski microscopy. It is shown that, besides the well-known InGaAs crystallites which epitaxially grow upon dissolution of the substrate, an array of In-rich dendrites is observed whose density correlates with the density of the crystal dislocations. The driving force for In to protrude along the dislocations to eventually form In(Ga)As spikes is apparently excess arsenic reported to be present in the vicinity of the individual dislocations. It is postulated that the existing data concerning the coefficient of classical diffusion of In in GaAs may be overestimated by a factor of 106.  相似文献   

5.
The method of separability, introduced by Symanzik, is applied in order to describe the effect of a boundary for a fractional quantum Hall liquid in the Laughlin series. An Abelian Chern‐Simons theory with plane boundary is considered and the Green functions both in the bulk and on the edge are constructed, following a rigorous, perturbative, quantum field theory treatment. We show that the conserved boundary currents find an explicit interpretation in terms of the continuity equation with the electron density satisfying the Tomonaga‐Luttinger commutation relation.  相似文献   

6.
The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state.  相似文献   

7.
The current-voltage (I-V) characteristics of Al/SiO2/p-Si metal-insulator-semiconductor (MIS) Schottky diodes were measured at room temperature. In addition the capacitance-voltage (C-V) and conductance-voltage (G-V) measurements are studied at frequency range of 10 kHz-1 MHz. The higher value of ideality factor of 3.25 was attributed to the presence of an interfacial insulator layer between metal and semiconductor and the high density of interface states localized at Si/SiO2 interface. The density of interface states (Nss) distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) at room temperature for the Schottky diode on the order of ≅4 × 1013 eV−1 cm−2. These high values of Nss were responsible for the non-ideal behaviour of I-V and C-V characteristics. Frequency dispersion in C-V and G-V can be interpreted only in terms of interface states. The Nss can follow the ac signal especially at low frequencies and yield an excess capacitance. Experimental results show that the I-V, C-V and G-V characteristics of SD are affected not only in Nss but also in series resistance (Rs), and the location of Nss and Rs has a significant on electrical characteristics of Schottky diodes.  相似文献   

8.
9.
10.
The presented work describes behavior of contact structures of Ni/Ti type on 6H-SiC n-type. The best contact resistivity obtained is 3.3 × 10−4 Ω cm2. The structure showed excellent thermal stability, it was stable after being tested for 10 h at 900 °C. XRD analysis after annealing at 960 °C revealed orthorhombic Ni2Si as the dominate phase.  相似文献   

11.
We introduce and experimentally demonstrate a new method that allows us to controllably couple copropagating spin-resolved edge states of a two-dimensional electron gas (2DEG) in the integer quantum Hall regime. The scheme exploits a spatially periodic in-plane magnetic field that is created by an array of Cobalt nanomagnets placed at the boundary of the 2DEG. A maximum charge or spin transfer of 28±1% is achieved at 250 mK.  相似文献   

12.
We report on the mapping of quantum-Hall edge states by quasiresonant photovoltage measurements using a near-field scanning optical microscope. We have observed fine structures near sample edges that shift inward with an increase in magnetic field in accordance with the shift of the positions of the quantum-Hall edge states. We have found a transition from the weak disorder regime where compressible-incompressble strips are visible to the strong disorder regime where fluctuations smear out incompressible strips.  相似文献   

13.
We study the transition from the Abelian multi-component (3, 3, 1) quantum Hall state to the non-Abelian one component Pfaffian state in bilayer two dimensional electron systems. We show that tunneling between layers can induce this transition. At the transition points part of the degrees of freedom that describe the (3, 3, 1) state disappear from the spectrum, and the system is correctly described by the Pfaffian state, with quasi-particles that satisfy non-Abelian statistics. The mechanism described in this work provides for a physical Hamiltonian interpretation of the algebraic projection from the (3, 3, 1) to the Pfaffian state that has been discussed in the literature. Received 12 September 2000  相似文献   

14.
Using the Calogero model as an example, we show that the transport in interacting nondissipative electronic systems is essentially nonlinear and unstable. Nonlinear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for nonlinear systems, a propagating semiclassical wave packet develops a shock wave at a finite time. A wave packet collapses into oscillatory features which further evolve into regularly structured localized pulses carrying a fractionally quantized charge. The Calogero model can be used to describe fractional quantum Hall edge states. We discuss perspectives of observation of quantum shock waves and a direct measurement of the fractional charge in fractional quantum Hall edge states.  相似文献   

15.
Effects of backward scattering between fractional quantum Hall (FQH) edge modes are studied. Based on the edge-state picture for hierarchical FQH liquids, we discuss the possibility of the transitions between different plateaux of the tunneling conductance G. We find a selection rule for the sequence which begins with a conductance (m: integer, p: even integer) in units of e 2/h. The shot-noise spectrum as well as the scaling behavior of the tunneling current is calculated explicitly. Received 5 October 1999 and Received in final form 19 November 1999  相似文献   

16.
Spin-filtered edge states and quantum Hall effect in graphene   总被引:1,自引:0,他引:1  
Electron edge states in graphene in the quantum Hall effect regime can carry both charge and spin. We show that spin splitting of the zeroth Landau level gives rise to counterpropagating modes with opposite spin polarization. These chiral spin modes lead to a rich variety of spin current states, depending on the spin-flip rate. A method to control the latter locally is proposed. We estimate Zeeman spin splitting enhanced by exchange, and obtain a spin gap of a few hundred Kelvin.  相似文献   

17.
The crossover from the semiclassical transport to the quantum Hall effect is studied by examining a two-dimensional electron system in an AlGaAs/GaAs heterostructure. By probing the magneto-oscillations, it is shown that the semiclassical Shubnikov-de Haas (SdH) formulation can be valid even when the minima of the longitudinal resistivity approach zero. The extension of the applicable range of the SdH theory could be due to the damping effects resulting from disorder and temperature. Moreover, we observed plateau-plateau transition-like behavior with such an extension. From our study, it is important to include positive magnetoresistance to refine the SdH theory.  相似文献   

18.
Both epitaxial and amorphous ultra-thin alumina films were grown on a Cu-9 at.%Al(1 1 1) substrate by selective oxidation of Al in the alloy in ultra high vacuum. The crystallinity of the alumina films was controlled by oxidation temperature. The photoelectron spectra of Al 2p, O 1s and valence band were measured in-situ during oxidation. The influence of the crystallinity on the interface structure between the alumina films and the substrate was discussed by analyzing the Al 2p spectra composed of multiple peaks. The energy difference between the Fermi level of the substrate and the valence band maximum of the alumina films (band offset) was derived from the valence band spectra. The energy band alignment at the interface between each of the two alumina films and the substrate was revealed by combining the binding energy values of the core levels with the band offset values. The influence of the alumina crystallinity on the band alignment was discussed.  相似文献   

19.
Charge injection from metal electrodes to organics is a subject of intense scientific investigation for organic electronics. Ballistic electron emission microscopy (BEEM) enables spectroscopy and imaging of buried interfaces with nanometer resolution. Spatial non-uniformity of carrier injection is observed for both Ag-PPP (poly-paraphenylene) and Ag-MEHPPV (poly-2-methoxy-5-2-ethyl-hexyloxy-1,4-phenylenevinylene) interfaces. BEEM current images are found to correlate only marginally with the surface topography of the Ag film.  相似文献   

20.
In this paper, we discuss the experimental results of M. Grayson et al. on tunneling I–V characteristics of the quantum Hall edge. We suggest a two-step tunneling mechanism involving localized electron states near the edge, which might account for the discrepancy between the experimental data and the predictions of the chiral Luttinger liquid theory of the quantum Hall edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号