首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Spherical-shaped Li4Ti5O12 anode powders with a mean size of 1.5 μm were prepared by spray pyrolysis. The precursor powders obtained by spray pyrolysis had no peaks of crystal structure of Li4Ti5O12. The powders post-treated at temperatures of 800 and 900 °C had the single phase of spinel Li4Ti5O12. The powders post-treated at a temperature of 1000 °C had main peaks of the Li4Ti5O12 phase and small impurity peaks of Li2Ti3O7. The spherical shape of the precursor powders was maintained after post-treatment at temperatures below 800 °C. The Brunauer-Emmett-Teller (BET) surface areas of the Li4Ti5O12 anode powders post-treated at temperatures of 700, 800 and 900 °C were 4.9, 1.6 and 1.5 m2/g, respectively. The initial discharge capacities of Li4Ti5O12 powders were changed from 108 to 175 mAh/g when the post-treatment temperatures were changed from 700 to 1000 °C. The maximum initial discharge capacity of the Li4Ti5O12 powders was obtained at a post-treatment temperature of 800 °C, which had good cycle properties below current densities of 0.7 C.  相似文献   

2.
Magnetic powders for sintered NdFeB magnets have been prepared by using an advanced processing method including strip casting, hydrogen decrepitation, jet milling and rubber isotropic press. The effects of Dy, Ga and Co addition on the microstructure and magnetic properties of sintered magnets have been investigated. By adopting a suitable component ratio and adjusting proper technological parameters, we have prepared high-coercivity sintered NdFeB magnets with hard magnetic properties of jHc=25.6 kOe, Br=13.2 kG and (BH)max=39.9 MGOe. The temperature coefficient of coercivity of the magnets (between 20 and 150 °C) is –0.53%/°C. The magnetic properties at high temperature satisfy the needs of permanent magnet motors.  相似文献   

3.
Nanocrystalline Fe75Si25 powders were prepared by mechanical alloying in a planetary ball mill. The evolution of the microstructure and magnetic properties during the milling process were studied by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer measurements. The evolution of non-equilibrium solid solution Fe (Si) during milling was accompanied by refinement of crystallite size down to 10 nm and the introduction of high density of dislocations of the order of 1017 m−2. During the milling process, Fe sites get substituted by Si. This structural change and the resulting disorder are reflected in the lattice parameters and average magnetic moment of the powders milled for various time periods. A progressive increase of coercivity was also observed with increasing milling time. The increase of coercivity could be attributed to the introduction of dislocations and reduction of powder particle size as a function of milling time.  相似文献   

4.
Three series of SmCo5.6Ti0.4 samples were prepared by quenching, melt spinning, and ball milling, respectively. Annealing at different temperatures was carried out for the three series. The influence of the processing routes on the structural and magnetic properties was systematically investigated for this alloy. The as-quenched bulk sample consisted of three phases with a rather coarse grain microstructure. Low intrinsic coercivity (iHc) of 0.12 T was obtained in this sample. While the as-spun ribbons and as-milled/annealed powders showed the CaCu5-type phase (1:5) plus Th2Zn17-type phase (2:17), and the 1:5 phase plus TbCu7-type phase (1:7), respectively, with nanograin microstructure. The iHc of as-spun ribbons and as-milled/annealed (700 °C for 2 h) powders was found to be 0.59 and 2.23 T, respectively. Coercivity mechanism of these as-spun ribbons is mainly of nucleation type. In the as-milled/annealed powders, the network of the nanograin boundaries is believed to provide strong pinning sites for the domain wall movement.  相似文献   

5.
In the present work, solid-state reactions in Sm2(Co, Fe, Cu, Zr)17-type alloys have been investigated by means of in situ electrical resistivity measurements. Changes in the electrical resistivity of a Sm(Co0.74Fe0.1Cu0.12Zr0.04)8.5 alloy after solid solution treatment at 1190 °C, quenching to room temperature, and during isothermal ageing at temperatures between 400 and 900 °C, have indicated microstructural/phase changes occurring at temperatures below those commonly used for the development of high coercivity in Sm(Co, Fe, Cu, Zr)z-type materials. Subsequent crystallographic and magnetic transition measurements have shown a high degree of correlation with respect to the changes observed in the electrical resistivity during isothermal ageing.  相似文献   

6.
MnxBi100−x (x=48, 50, 55 and 60) alloys were prepared by the induction melting technique, and subjected to melt spinning and subsequent ball milling. XRD shows that the as-milled powders were mainly composed of LTP MnBi. Increasing melt spinning speed and reducing annealing treatment time can restrain the segregation of Mn from MnBi liquid during the peritectic reaction, which increases the LTP MnBi content. High energy ball milling results in the coercivity increase of MnBi powders. With increasing milling time, the coercivity increases initially and then decreases gradually. After ball milling for 4 h, the coercivity of the MnxBi100−x powders is 11.4 kOe for x=48 and 14.8 kOe for x=55. The optimal composition of Mn48Bi52 with more LTP has an M2.2 T of 49.98 emu/g and an Mr of 33.57 emu/g.  相似文献   

7.
In this work wüstite nanoparticles have been prepared via high-energy ball milling, using high-purity hematite (Fe2O3) and iron (Fe) powders as the starting materials. In order to get a single-phase wüstite different mole ratios of (Fe/Fe2O3) were milled, using a planetary mill. X-ray diffraction studies of the as-milled powders show that a single-phase wüstite was formed for a mole ratio of 0.6. Lattice parameter of the wüstite was obtained from XRD data, by which a value of 0.072 was obtained for x in Fe1−xO. A mean crystallite size of 13±1 nm was calculated for the single-phase wüstite, using Scherrer's formula. The morphology of the powders was also checked by TEM. Variations of pressure and temperature in the vial were recorded with respect to the milling time, using a GTM unit. Hysteresis loops of the as-milled powders at 5 K and room temperature have been obtained by SQUID and by VSM systems, respectively. The loops show non-zero coercivity, in contrast to the bulk wüstite. The observed magnetizations can be explained by a model based on the spinel-type defect clusters in non-stoichiometry wüstite.  相似文献   

8.
Double perovskite Sr2FeMoO6 powders with small crystallite size have been synthesised with citrate-gel method. The starting solution pH was varied between 1.5 and 9.0 resulting in large differences in the phase composition and ordering of B/B sites. The samples prepared at 975 °C had crystallite sizes under 40 nm whereas crystallite sizes of the samples prepared at 1050 °C were between 78 and 239 nm. The XRD patterns were refined with spacegroup I 4/m, which gave good results for both batches, although clearly better results were obtained with monoclinic P 21/n spacegroup for the 975 °C batch. The ordering and the saturation magnetization agreed well with each other after treatment at 1050 °C, but the samples prepared at 975 °C had a strongly reduced saturation magnetization from that given by the ordering.  相似文献   

9.
Tuning the hydrogen storage properties of complex metal hydrides is of vast interest. Here, we investigate the hydrogen release and uptake pathways for a reactive hydride composite, LiBH4−NaAlH4 utilizing in situ synchrotron radiation powder X-ray diffraction experiments. Sodium alanate transforms to sodium borohydride via a metathesis reaction during ball milling or by heating at T∼95 °C. NaBH4 decomposes at ∼340 °C in dynamic vacuum, apparently directly to solid amorphous boron and hydrogen and sodium gas and the latter two elements are lost from the sample. Under other conditions, T=400 °C and p(H2)=∼1 bar, NaBH4 only partly decomposes to B and NaH. On the other hand, formation of LiAl is facilitated by dynamic vacuum conditions, which gives access to the full hydrogen contents in the LiBH4−NaAlH4 system. Formation of AlB2 is observed (T∼450 °C) and other phases, possibly AlBx or Al1−xLixB2, were observed for the more Li-rich samples. This may open new routes to the stabilization of boron in the solid state in the dehydrogenated state, which is a challenging and important issue for hydrogen storage systems based on borohydrides.  相似文献   

10.
Fabrication and characterization of magnetic Fe3O4-CNT composites   总被引:2,自引:0,他引:2  
Carbon nanotubes (CNTs) decorated with magnetite nanoparticles on their external surface have been fabricated by in situ solvothermal method, which was conducted in benzene at 500 °C with ferrocene and CNTs as starting reagents. The as-prepared composites were characterized using XRD, FTIR, SEM and TEM. It has been found that the amount of magnetite nanoparticles deposited on the CNTs can be controlled by adjusting the initial mass ratio of ferrocene to CNTs. The Fe3O4-CNT composites display good ferromagnetic property at room temperature, with a saturation magnetization value (Ms) of 32.5 emu g−1 and a coercivity (Hc) of 110 Oe.  相似文献   

11.
Nanocrystalline Nd12Fe82B6 (atomic ratio) alloy powders with Nd2Fe14B/α-Fe two-phase structure were prepared by HDDR combined with mechanical milling. The as-cast Nd12Fe82B6 alloy was disproportionated via ball milling in hydrogen, and desorption–recombination was then performed. The phase and structural change due to both the milling in hydrogen and the subsequent desorption–recombination treatment was characterized by X-ray diffraction (XRD). The desorption–recombination behavior of the as-disproportionated alloy was investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The morphology and microstructure of the final alloy powders subject to desorption–recombination treatment were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The results showed that, by milling in hydrogen for 20 h, the matrix Nd2Fe14B phase of the alloy was fully disproportionated into a nano-structured mixture of Nd2H5, Fe2B, and α-Fe phases with average size of about 8 nm, and that a subsequent desorption–recombination treatment at 760 °C for 30 min led to the formation of Nd2Fe14B/α-Fe two-phase nanocomposite powders with average crystallite size of 30 nm. The remanence Br, coercivity Hc, and maximum energy product (BH)max of such nanocrystalline Nd12Fe82B6 alloy powders achieved 0.73 T, 610 kA/m, and 110.8 kJ/m3, respectively.  相似文献   

12.
Two alloys of the Co-Ge system were produced by mechanical alloying starting from the elemental powders in the compositions Co20Ge80 and Co40Ge60. The crystalline structures of the CoxGe100−x (x=20, 40) alloys obtained were investigated using the X-ray diffraction (XRD) technique. The measured XRD patterns showed the presence of the peaks corresponding to the crystalline m-CoGe phase and also to the high pressure and temperature phase c-CoGe in the as-milled sample for Co20Ge80, although it was milled at room temperature and pressure. For Co40Ge60, the crystalline Co3Ge2 phase was obtained, and structural data for all phases were determined by means of a Rietveld refinement procedure. The thermal stability of the phases was investigated performing a heat treatment of the alloys at 450 °C for 6 h and, after that, new XRD measurements were collected and were also studied using a Rietveld refinement procedure. The m-CoGe and Co3Ge2 phases seem to be very stable, but the relative amount of c-CoGe decreases a little, indicating a less stable phase, which can be explained by the fact that it is produced usually under extreme conditions.  相似文献   

13.
The mechanosynthesis of Fe50Zn50 alloy resulted in the formation of the bcc Fe(Zn) solid solution after 20 h of milling. Structural transformations induced by mechanical alloying and heating, and magnetic properties of the powders were studied by Mössbauer spectroscopy, X-ray diffraction, Faraday balance and vibrating sample magnetometry techniques. All alloys studied exhibit strong magnetic ordering with Curie temperatures close to 900 K. Room temperature Mössbauer measurements revealed distinguished magnetic environments in the samples. The decrease of coercivity with prolonged milling time was attributed to the reduction or averaging of local magnetic anisotropies.  相似文献   

14.
Optical observation under the polarizing microscope and DSC measurements on K3H(SeO4)2 single crystal have been carried out in the temperature range 25-200 °C. It reveals a high-temperature structural phase transition at around 110 °C. The crystal system transformed from monoclinic to trigonal. Electrical impedance measurements of K3H(SeO4)2 were performed as a function of both temperature and frequency. The electrical conduction and dielectric relaxation have been studied. The temperature dependence of electrical conductivity indicates that the sample crystal became a fast ionic conductor in the high-temperature phase. The frequency dependence of conductivity follows the Jonscher's universal dynamic law with the relation σ(ω)=σ(0)+n, where ω is the frequency of the AC field, and n is the exponent. The obtained n values decrease from 1.2 to 0.1 from the room temperature phase to fast ionic phase. The high ionic conductivity in the high-temperature phase is explained by the dynamical disordering of protons between the neighboring SeO4 groups, which provide more vacant sites in the crystal.  相似文献   

15.
This paper investigates structural, microstructural and magnetic properties of amorphous/nanocrystalline Ni58Fe12Zr10Hf10B10 powders prepared by high energy milling. Ball milling of Ni, Fe, Zr, Hf and B leads to alloying of the element powders at 120 h. The results show that at 190 h the amorphous content is at the highest level and the grain size is about 2 nm. The magnetic measurements reveal that the coercivity and the saturation magnetization reach about 20 Oe and 30 emu/g at 190 h and become approximately 5 Oe and 40 emu/g after a suitable heat treatment, respectively.  相似文献   

16.
Glycine-sodium nitrate, C2H5N2NaO5 (GSN), crystals were grown from aqueous solutions by slow cooling with a temperature lowering rate of 1 °C/day in the range of 40-22 °C. These crystals were analyzed by differential thermal and thermogravimetric analysis (DTA-TGA) and mechanical hardness tester in order to obtain their thermal and mechanical properties. Mechanical characterization was done by studying the variation of microhardness with applied load. The dielectric properties of GSN were calculated by using the CASTEP code within the framework of the generalized gradient approximation (GGA). For better understanding of the optical properties of GSN, the second derivative of ε2(E) was evaluated. DTA-TGA analysis showed that the material has a thermal stability up to 198 °C. The microhardness test was carried out for several faces of GSN crystals, and the tests revealed a load dependence to hardness. Analysis of the second derivative of ε2(E) allowed to obtain better resolution of the electronic transitions involving the energy bands. Besides, a theoretical representation of the orbitals’ energy diagram was obtained. A discussion about the relation of structure-properties and molecular character of GSN is presented here.  相似文献   

17.
Nanostructured Fe1−xSix (x=0.05, 0.1, 0.15 and 0.2) powders are prepared by different multi-step milling and annealing treatments. The microstructure and magnetic properties are investigated for all alloys. The minimum crystallite size of as-annealed powders (∼40 nm) is found to be larger than in as-milled ones (∼15 nm). It is found that microstrains of 2- and 4-step processes are close to those of the as-received powders. The lattice parameter decreased ∼0.5% and 0.9% for the powders that experienced milling and annealing at the last step, respectively. The Fe80Si20 powders prepared by 1- and 4-step treatments show the maximum (40-125 Oe) and minimum (20-26 Oe) coercivity, respectively. With increase in milling time, mass magnetization increased for all processes. This can be ascribed to diminution in magneto-crystalline anisotropy due to grain refinement. The maximum mass magnetization (160-199 Am2/kg) is achieved for the 4-step process.  相似文献   

18.
The paper describes the preparation and emission property of scandia and Re doped tungsten matrix impregnated cathode. By an easy and reproducible way, solid-liquid doping combined with two-step reduction, powders of tungsten particles covered with scandium oxide were obtained. Compared with scandia mixed tungsten powders prepared by mechanically mixing, scandia and rhenium doped tungsten powders had smaller particle size, for example, scandia (3 wt%) and Re (5 wt%) doped tungsten powders had the average size of about 50 nm in diameter. Based on this kind of powder, scandia and Re doped tungsten matrix with the sub-micrometer sized tungsten grains and a more uniform distribution of Sc2O3 were obtained in this paper. Scandia and Re doped tungsten matrix impregnated cathode had shown excellent emission property and good emission uniformity. The space charge limited current densities of more than 58A/cm2 at 900 °Cb could be obtained and the work function of this cathode was as low as 1.18 eV.  相似文献   

19.
Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under −10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T.  相似文献   

20.
FePt multilayer films with and without Al underlayer were prepared by magnetron sputtering on SiO2 substrate and subsequently annealed in vacuum. Experimental results suggest that the existence of Al underlayer can effectively reduce the ordering temperature and increase the coercivity of FePt films. Due to the slight larger lattice constant of Al underlayer than that of FePt films, [Fe (0.66 nm)/Pt (0.84 nm)]30 films begin to order at 350 °C and the coercivity of them reach to 5.7 kOe after annealing at 400 °C for half an hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号