首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of Se 100−xInx (x=10, 20 and 30 at%) have been prepared by the flash evaporation technique. The effect of the indium content on optical band gap of the Se100−x Inx films has been investigated by the optical characterization. The optical band gap values of the Se100−x Inx thin films were determined and are found to decrease with increasing indium content. This indium content changes the width of localized states in the optical band gaps of the thin films. It was found that the optical band gap, Eg, of the Se100−x Inx films changes from 1.78 to 1.37 eV with increasing indium content from 10 to 30 at%, while the width of localized states in optical band gap changes from 375 to 342 meV. The temperature dependence of the dark electrical conductivity were studied in the temperature range 303-433 K and revealed two activation energies providing two electrical conduction mechanisms. The activation energy of the Se100−x Inx films in the high temperature region changes from 0.49 to 0.32 eV with increasing indium content from 10 to 30 at%, while the hopping activation energy in the lower temperature region changes from 0.17 to 0.22 meV. The change in the electrical conductivity with time during the amorphous-to-crystalline transformation is recorded for amorphous Se100−xInx films at two points of isothermal temperatures 370 and 400 K. The formal crystallization theory of Avrami has been used to calculate the kinetic parameters of crystallization.  相似文献   

2.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

3.
Using quantum mechanics GASTEP software package based on the first principle density function theory, the electronic structure and optical properties of Ga1−xAlxAs at different Al constituent are calculated. Result shows that with the increase of Al constituent, the band gap of Ga1−xAlxAs increases and varies from direct band gap to indirect band gap; the absorption band edge and the absorption peak move to high-energy side; the static reflectivity decreases. With the increasing of the incident photon energy, Ga1−xAlxAs shows metal reflective properties in certain energy range. With the increasing of Al constituent, static dielectric constant decreases and the intersection of dielectric function and the x-axis move towards high-energy side; the peak of energy loss function move to low-energy side and the peak value reduces.  相似文献   

4.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

5.
Ternary alloyed CdS1−xSex thin films of variable composition ‘x’ were grown by the simple and economical chemical bath deposition technique. The as-grown thin films were characterized for structural, compositional, surface morphological, optical and electrical studies. The X-ray diffraction (XRD) patterns of the sample indicated that all the samples were polycrystalline in nature with hexagonal structure. Scanning electron microscopy (SEM) micrographs showed uniform morphology with spherical shaped grains distributed over entire glass substrate. EDAX studies confirmed that the CdS1−xSex films were having approximately same stoichiometry initially as well as finally. Room temperature optical measurements showed that band gap engineering could be realized in CdS1−xSex thin films via modulation in composition ‘x’. Electrical resistivity of CdS1−xSex thin films for various compositions was found to be low. The broad and fine tunable band gap properties of ternary CdS1−xSex thin films have potential applications in opto-electronic devices.  相似文献   

6.
Se100−xHgx bulk samples have been prepared by conventional melt quenching technique. The thin films of the material have been prepared on glass substrate using the thermal evaporation technique. The transmission spectra has been studied to measure the optical constants like absorption coefficient (α), extinction coefficient (K), optical band gap (Eg), Urbach energy (Ee). The DC conductivity (σdc) of Se100−xHgx has been also studied to find the activation energy (ΔEa)(ΔEa). The optical band gap increases and Urbach energy first increases then decreases with increase in Hg concentration. DC conductivity and activation energy increases with increase in Hg concentration. These materials are found suitable for the optical disk materials and in optoelectronic devices due to their high absorption coefficient and dependence of reflectance on composition.  相似文献   

7.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

8.
TixSi1−xO2 compound thin-film systems were deposited by reactive RF magnetron co-sputtering technique. The effect of Ti concentration on the hydrophilicity of TixSi1−xO2 compound thin films was studied and it was shown that the films with Ti0.6Si0.4O2 composition possess the best hydrophilic property among all the grown samples. Surface ratio and average roughness of the thin films were measured by atomic force microscopy (AFM). Surface chemical states and stoichiometry of the films were determined by X-ray photoelectron spectroscopy (XPS). In addition, XPS revealed that the amount of Ti-O-Si bonds in nanometer depth from the surface of the Ti0.6Si0.4O2 films was the maximum, which resulted in the most stable superhydrophilic property. According to XRD data analysis for the pure TiO2 films, the polycrystalline anatase phase was formed with an average grain size of about 15 nm. Moreover, amorphous phase was also formed for the TixSi1−xO2 compound systems due to presence of silicon in the films. Finally, optical properties of the films such as transmission, reflection and band gap energy were investigated using UV-vis spectrophotometry. It was found that the transmittance of the films was decreased with increasing Ti concentration in the films.  相似文献   

9.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1−xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

10.
Mixed thin films of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x (x=0.25) were prepared on glass substrates by spray pyrolysis technique for various substrate temperatures 300, 320 and 340 °C. Structural and optical properties were studied. XRD studies reveal the formation of mixed films. The substrate temperature of 340 °C seems to be critical for the formation of CdO-PbO mixed films. It is observed that (CdS)1−x(PbS)x mixed films were formed at all the three substrate temperatures. The direct band gap value of (CdO)1−x(PbO)x and (CdS)1−x(PbS)x mixed films is about 2.6 and 2.37 eV, respectively.  相似文献   

11.
CdSexTe1−x nanocrystals (x=0.25, 0.40, 0.50, 0.60 and 0.75) were synthesized using thioglycerol as a stabilizing agent. The composition of the CdSexTe1−x nanocrystals was precisely controlled by tuning the precursor (Se/Te) ratio. The structural, morphological and optical properties of the nanocrystals were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), diffused reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. It is found that the Se/Te ratio significantly affects the properties of the resultant CdSexTe1−x nanocrystals. XRD pattern of the CdSexTe1−x nanocrystals revealed cubic, hexagonal and mixed phases depending on the ratio of Se:Te. Surface morphology of the CdSexTe1−x nanocrystals showed nanoclusters of sizes ∼50 nm, with the adjacent cluster interlinking each other. DRS revealed the size dependence band gap energy prevailing in the CdSexTe1−x nanocrystals from 1.52 to 2.66 eV due to the optical bowing effect. PL measurements exhibited band edge emission in the visible spectral region, and are red shifted with increase in Se concentration. The facile route employed in the present work to synthesis the CdSexTe1−x nanocrystals in an aqueous medium is simple and controllable, and the strategy presented will be handy in preparing diverse semiconducting nanocrystals.  相似文献   

12.
The index dispersion at UV–VIS range for polycrystalline MgxZn1−xO films on silicon with different Mg concentration was obtained by spectroscopic ellipsometry (SE) method. It decreases with the increase of the Mg content. Above the relative peak wavelength, they are well fitted by the first-order Sellmeier relation. The band gap of films on sapphire of different Mg content was determined from transmission measurements. Photoluminescence (PL) illustrated that for MgxZn1−xO films every PL peak corresponded to a special excitation wavelength. The wavelength of the PL peak was proportional to the special excitation wavelength. A strong peak was obtained in the blue band for the films due to the large amount of oxygen vacancies caused by excess Zn and Mg atoms, while weak peak at ultraviolet band.  相似文献   

13.
Ternary polycrystalline Zn1−xCdxO semiconductor films with cadmium content x ranging from 0 to 0.23 were obtained on quartz substrate by pulse laser deposited (PLD) technique. X-ray diffraction measurement revealed that all the films were single phase of wurtzite structure grown on c-axis orientation with its c-axis lattice constant increasing as the Cd content x increasing. Atomic force microscopy observation revealed that the grain size of Zn1−xCdxO films decreases continuously as the Cd content x increases. Both photoluminescence and optical measurements showed that the band gap decreases from 3.27 to 2.78 eV with increasing the Cd content x. The increase in Cd content x also leads to the broadening of the emission peak. The resistivity of Zn1−xCdxO films decreases evidently for higher values of Cd content x. The shift of PL emission to visible light as well as the decrease of resistivity makes the Zn1−xCdxO films potential candidate for optoelectronic device.  相似文献   

14.
R. Ghosh 《Applied Surface Science》2009,255(16):7238-7242
MgxZn1−xO (x = 0.0-0.20) thin films have been deposited by sol-gel technique on glass substrates and the effect of growth ambient (air and oxygen) on the structural, and optical properties have been investigated. The films synthesized in both ambient have hexagonal wurtzite structure. The c-axis lattice constant decreases linearly with the Mg content (x) up to x = 0.05, and 0.10 respectively for air- and oxygen-treated films, above which up to x = 0.20, the values vary irregularly with x. The change in the optical band gap values and the ultraviolet (UV) peak positions of MgxZn1−xO films show the similar change with x. These results suggest that the formation of solid solution and thus the structural and optical properties of MgxZn1−xO thin films are affected by the growth ambient.  相似文献   

15.
Titanium nitride (TiNx) films with various nitride compositions (x) were prepared on glass substrates by atmospheric pressure chemical vapor deposition using TiCl4 and NH3 as precursors. The structural, compositional, electrical and optical properties of the films were studied and the results were discussed with respect to nitride composition. The results showed a linear relationship between the lattice constant and the nitride composition. Resistivity of the films was minimized near x = 1. All the TiNx films exhibited a transmission band with a peak value of about 15% in the visible region (400-700 nm). As the wavelength increased to transition point (λT-R), the reflectance of the obtained films presented a sharp increase and then reached a high value of about 50% near 2000 nm. Moreover, the red-shift of transmission band and the transition wavelength (λT-R) with increasing the nitride composition were also discussed.  相似文献   

16.
(Na1−xKx)0.5Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n2 increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility χ(3) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics.  相似文献   

17.
Thin (AsSe)100−xAgx films have been grown onto quartz substrates by vacuum thermal evaporation or pulsed laser deposition from the corresponding bulk materials. The amorphous character of the coatings was confirmed by X-ray diffraction investigations. Their transmission was measured within the wavelength range 400-2500 nm and the obtained spectra were analyzed by the Swanepoel method to derive the optical band gap Eg and the refractive index n. We found that both parameters are strongly influenced by the addition of silver to the glassy matrix: Eg decreases while n increases with Ag content. These variations are discussed in terms of the changes in the atomic and electronic structure of the materials as a result of silver incorporation.  相似文献   

18.
The optical absorption of the as-prepared and thermally annealed Se85−xTe15Sbx (0≤x≤9) thin films was measured. The mechanism of the optical absorption follows the rule of non-direct transition. The optical energy gap (E0) decreased from 1.12 to 0.84 eV with increasing Sb content of the as-prepared films from 0 to 9 at.%. The as-prepared Se76Te15Sb9 films showed an increase in (E0) with increasing the temperature of annealing in the range above Tg (363 K). The electrical conductivity of the as-prepared and annealed films was found to be of Arrhenius type with temperature in the range 300-360 K. The activation energy for conduction was found to decrease with increasing both the Sb content and temperature of annealing. The results were discussed on the basis of the lone-pair electron effect and of amorphous crystalline transformation.  相似文献   

19.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

20.
The electrical conductivity σ, Hall effect RH, and thermoelectric power Q of CuGa0.25In0.75Se2 thin films with different growth conditions have been measured at temperature 300-520 K. These properties were also measured at room temperature for different composition of CuGaxIn1−xSe2 (0.75≥x≥0) deposited at the same evaporation conditions. All investigated films are p-type over the whole temperature range. Electrical conduction was studied in order to establish its mechanism.The room temperature photoelectric response of those films were measured as a function of wavelength (2.5≥λ≥0.3) μm. It is found that the energy gap values follow a second order equation in x giving a downward bowing parameter of about 0.31 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号