首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on laser synthesis of thin 30–200 nm epitaxial layers with mosaic structure of diluted magnetic semiconductors GaSb:Mn and InSb:Mn with the Curie temperature TC above 500 K and of InAs:Mn with TC no less than 77 K. The concentration of Mn was ranged from 0.02 to 0.15. In the case of InSb:Mn and InAs:Mn films, the additional pulse laser annealing was needed to achieve ferromagnetic behavior. We used Kerr and Hall effects methods as well as ferromagnetic resonance (FMR) spectroscopy to study magnetic properties of the samples. The anisotropy FMR was observed for both layers of GaSb:Mn and InSb:Mn up to 500 K but it takes place with different temperature dependencies of absorption spectra peaks. The resonance field value and amplitude of FMR signal on the temperature is monotonically decreased with the temperature increase for InSb:Mn. In the case of GaSb:Mn, this dependence is not monotonic.  相似文献   

2.
Anomalous Hall effect and a large negative magnetoresistance (up to −8.5%) have been found in the high-TC ferromagnetic chalcopyrite (Zn,Mn)GeP2. The elevated manganese concentration in the top diffusion layer grown on ZnGeP2 isolated substrate gives rise to the increased hole conductivity and the temperature dependence of electric resistance ρ(T) typical of a metallic trace which indicate the charge carrier degeneration in combination with ferromagnetism. Additionally, we found a hysteresis of magnetoresistance Δρ/ρ0 vs. H is associated with change in a magnetic order at low temperatures, T<50 K. The effect accompanies the reversal sign of Δρ/ρ0 and is consistent with a singularity of magnetization vs. temperature. These anomalies observed for the first time in the high-TC ferromagnetic chalcopyrites II-IV-V2:Mn are explained by the phenomenological cluster model for ferromagnets.  相似文献   

3.
We report on the ferromagnetic characteristics of Zn1−xMnxO films (x=0.1-0.3) prepared by the sol-gel method on silicon substrates using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Magnetic measurement show that the Curie temperature (TC) and the coercive field (HC) were ∼39 K and ∼2100 Oe for the film of x=0.2, respectively. EDS and TEM measurements indicate that Mn content at the interface is significantly higher than that at the center of the Zn0.8Mn0.2O film showing the ratio, Zn:Mn:O≅1:12:15. This experimental evidence suggests that ferromagnetic precipitates containing manganese oxide may be responsible for the observed ferromagnetic behavior of the film.  相似文献   

4.
The paper reports on the results of a study of the synthesis conditions effects on magnetic and transport properties of nanosized layers of high-Tc diluted magnetic semiconductors (DMS), such as Ge:Mn, Si:Mn and Si:Fe, fabricated by laser-plasma deposition over a wide range of the growth temperature, Tg=(20-550) °C on single-crystal GaAs or Al2O3 substrates. Ferromagnetism of the layers was detected by measurement data of the magneto-optical Kerr effect, anomalous Hall effect, negative magnetoresistance and ferromagnetic resonance (FMR) at 5-500 K. The optimum growth temperature, Tg, for Si:Mn/GaAs layers with Tc≈400 K is shown to be about 400 °C. The Si:Mn/Al2O3 layers with 35% of Mn have the metal-type of conductivity with manifestation of magnetization up to room temperature. Different types of uniformly doped structures and digital alloys have been investigated. In contrast to GaSb:Mn films, Si-based ferromagnetic layers have strongly different magnetic and electric properties in case of uniformly doped structures and digital alloys. Positive results of the Fermi level variation effect on the improvement of Si- and Ge-based DMS layers have been gained on the use of additional doping with shallow acceptor Al impurity which contributes to the increase of the hole concentration and the RKKY exchange interaction of 3d-ions. The Ge:(Mn, Al)/GaAs or Ge (Mn, Al)/Si layers grown at 20 °C feature surprising extraordinary angular dependence of FMR.  相似文献   

5.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

6.
The effect of electron-beam irradiation on the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates by using molecular beam epitaxy was investigated. The ferromagnetic transition temperature (Tc) of the annealed (Ga0.933Mn0.067)As thin films was 160 K. The Tc value for the as-grown (Ga0.933Mn0.067)As thin films drastically decreased with increasing electron-beam current. This significant decrease in the Tc value due to electron-beam irradiation originated from the transformation of Mn substituted atoms, which contributed to the ferromagnetism, into Mn interstitials or Mn-related clusters. These results indicate that the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates are significantly affected by electron-beam irradiation.  相似文献   

7.
La0.67Ca0.33MnO3 (LCMO) and Ag admixed La0.67Ca0.33MnO3 (Ag-LCMO) polycrystalline films have been prepared on SrTiO3 single crystal (100) substrates by ultrasonic spray pyrolysis technique. These films are characterized using XRD, SEM, and temperature dependence of resistivity (ρ-T) and ac susceptibility (χ-T). The films are having cubic structure with lattice parameters as 3.890 and 3.885 Å for LCMO and Ag-LCMO films, respectively. The peek in ρ-T curve (Tp) and the ferromagnetic transition temperature (TC) for the Ag-LCMO film is higher than that of LCMO film. The stability of both the films was tested by repeated measurements of its characteristics over a period of one week after several thermal cycling from room temperature to 77 K. In the LCMO film, the peak in the ρ-T curve (Tp) is found to shift towards lower value and conduction noise of the film increases in the subsequent measurements. In the case of Ag-LCMO the value of Tp, TC and conduction noise of the film did not change even after several measurements. Silver segregating at the grain boundaries in Ag-LCMO polycrystalline film seems to be responsible for improving the characteristics of Ag-LCMO films.  相似文献   

8.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

9.
It is expected that joint existence of ferromagnetic properties and ferroelectric structural phase transition in diluted magnetic semiconductors IV-VI leads to new possibilities of these materials. Temperature of ferroelectric transition for such crystals can be tuned by the change of Sn/Ge ratio. Magnetic susceptibility, Hall effect, resistivity and thermoelectric power of Ge1−xySnxMnyTe single crystals grown by Bridgeman method (x=0.083-0.115; y=0.025-0.124) were investigated within 4.2-300 K. An existence of FM ordering at TC∼50 K probably due to indirect exchange interaction between Mn ions via degenerated hole gas was revealed. A divergence of magnetic moment temperature dependences at T?TC in field-cooled and zero-field-cooled regimes is obliged to magnetic clusters which are responsible for superparamagnetism at T>TCTf (freezing temperature) and become ferromagnetic at TC arranging spin glass state at T<TfTC. Phase transition of ferroelectric type at T≈46 K was revealed. Anomalous Hall effect which allows to determine magnetic moment was observed.  相似文献   

10.
The effect of Al substitution for Mn site in layered manganese oxides La1.3Sr1.7Mn2−xAlxO7 on the magnetic and electrical properties has been investigated. It is interesting that all the samples undergo a similar and complex transition with lowing temperature; they transform from the two-dimensional short-range ferromagnetic order at T*, then enter the three-dimensional long-range ferromagnetic state at TC, at last they display the canted antiferromagnetic state below TN. T*, TC and TN are all reduced with Al content. Resistivity increases sharply with increasing Al concentration, and the metal-insulator transition disappears when x reaches 10%. Additionally, magnetoresistance (MR) effect is weakened. Al substitution dilutes the magnetic active Mn-O-Mn network and weakens the double exchange interaction, and further suppresses FM ordering and metallic conduction. Owing to the anisotropic interaction in the layered perovskite, the magnetic and electrical properties are more sensitive to Al doping level than those in ABO3-type perovskite.  相似文献   

11.
The influences of Mn doping on the structural quality of the ZnxMn1−xO:N alloy films have been investigated by XRD. Chemical compositions of the samples (Zn and Mn content) and their valence states were determined by X-ray photoelectron spectrometry (XPS). Hall effect measurements versus temperature for ZnxMn1−xO:N samples have been designed and studied in detail. The ferromagnetic transitions happened at different TC should explain that the magnetic transition in field-cooled magnetization of Zn1−xMnxO:N films at low temperature is caused by the strong p-d exchange interactions besides magnetic transition at 46 K resulting from Mn oxide, and that the room temperature ferromagnetic signatures are attributed to the uncompensated spins at the surface of anti-ferromagnetic nano-crystal of Mn-related Zn(Mn)O.  相似文献   

12.
The magneto-transport properties of ferromagnetic Ga1−xMnxAs epilayers with Mn mole fractions in the range of x≈2.2-4.4% were investigated through Hall effect measurements. The magnetic field-dependent Hall mobility for a metallic sample with x≈2.2% in the temperature range of T=0-300 K was analyzed by magnetic field-dependent mobility model including an activation energy of Mn acceptor level. This model provides outstanding fits to the measured data up to T=300 K. It was found that the acceptor levels with activation energies of 112 meV at B=0 Oe decreased to 99 meV at B=5 kOe in the ferromagnetic region. The decrease in acceptor activation energy was due to the spin splitting of the Mn acceptor level in the ferromagnetic region, and was responsible for increase in carrier concentration.  相似文献   

13.
Using Mn+ implantation following ion beam-induced epitaxial crystallization (IBIEC) annealing, high Curie temperature ferromagnetic (Ga,Mn)As thin film was fabricated. The crystalline quality of the Mn+ implanted layer was identified by X-ray diffraction (XRD) and transmission electron microscopy (TEM). A clear ferromagnetic transition at Tc 253 K was observed by magnetization vs. temperature measurement. We infer that IBIEC treatment is a useful method not only for the low-temperature annealing of (Ga,Mn)As thin films but also for other dilute magnetic semiconductor (DMS) samples.  相似文献   

14.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

15.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

16.
The crystal structure (rhombohedral) is not changed on the replacement of Mn by Co. The lattice parameters a and c decrease with the increasing Co concentration. In this paper we have systematically investigated the effect of Co doping on the Mn site in the La0.7Sr0.3MnO3 and find that Co substitution leads to a drastic suppression of ferromagnetic long-range order and metallic state. However, we observed substantial enhancement of MR ratio over the entire temperature studied for x=0.1 and a large increase of one at the low temperature for the compositions of x=0.2 and 0.3. The largest MR ratio as high as ≈78% is observed at 15 K in x=0.2 and 0.3. As x is further increased toward 1, conduction and ferromagnetism strongly recover but the MR ratio decreases obviously. The end member with x=1.0 has metallic and cluster spin-glass ferromagnetic behavior (T<TC) and a smaller value of MR (≈2–8%) in T<300 K with a maximum MR ratio of 8% at around TC (=238 K). Received: 11 September 1998 / Accepted: 19 November 1998 / Published online: 17 March 1999  相似文献   

17.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves.  相似文献   

18.
The temperature-dependent resistivity and thermoelectric power of monovalent (K) doped La1−xKxMnO3 polycrystalline pellets (x=0.05, 0.10 and 0.15) between 50 and 300 K are reported. K substitution enhances the conductivity of this system. Curie temperature (TC) also increases from 260 to 309 K with increasing K content. In the paramagnetic region (T>TC), the electrical resistivity is well represented by adiabatic polaron hopping, while in the ferromagnetic region (T<TC), the resistivity data show a nearly perfect fit for all the samples to an expression containing, the residual resistivity, spin-wave and two-magnon scattering and the term associated with small-polaron metallic conduction, which involves a relaxation time due to a soft optical phonon mode. Small polaron hopping mechanism is found to fit well to the thermoelectric power (S) data for T>TC whereas at low temperatures (T<TC) in ferromagnetic region (SFM), SFM is well explained with the spin-wave fluctuation and electron–magnon scattering. Both, resistivity and thermopower data over the entire temperature range (50–300 K) are also examined in light of a two-phase model based on an effective medium approximation.  相似文献   

19.
Double-layered manganite La1.4Ca1.6Mn2O7 has been synthesized using the solid-state reaction method. It had a metal-to-insulator transition at temperature TM1≈127 K. The temperature dependence of ac susceptibility showed a broad ferromagnetic transition. The two-dimensional (2D)-ferromagnetic ordering temperature (TC2) was observed as ≈245 K. The temperature dependence of its low-field magnetoresistance has been studied. The low-field magnetoresistance of double-layered manganite, in the temperature regions between TM1 and TC2, has been found to follow 1/T5. The observed behaviour of temperature dependence of resistivity and low-field magnetoresistance has been explained in terms of two-phase model where ferromagnetic domains exist in the matrix of paramagnetic regions in which spin-dependent tunneling of charge carriers occurs between the ferromagnetic correlated regions. Based on the two-phase model, the dimension of these ferromagnetic domains inside the paramagnetic matrix has been estimated as ∼12 Å.  相似文献   

20.
Theory has predicted that high temperature ferromagnetism (FM) should be found in cubic fake-diamonds, Mn-doped ZrO2. Experimentally, it is shown that Mn-doped ZrO2 ceramics are not ferromagnetic, but the nanosized Mn-doped ZrO2 thin films grown on LaAlO3 substrates can be ferromagnets with TC above 400 K. The largest saturated magnetic moment (Ms) is huge as of about 230 emu/cm3 for the Mn0.05Zr0.95O2 films, and it decreases as the Mn content increases. The intrinsic FM is strongly associated with the cubic structure of Mn-doped ZrO2, and the Mn–Mn interactions via oxygen intermediates are important. No electrical conductivity is observed. Mn-doped ZrO2 thin films can be truly considered as excellent candidates for spintronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号