首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cr-doped manganites Sr0.9Ce0.1Mn1−yCryO3 (y=0, 0.05, and 0.10) have been systematically investigated by X-ray, magnetic, transport, and elastic properties measurements. For parent compound Sr0.9Ce0.1MnO3, it undergoes a metal-insulator (M-I) transition at 318 K, which is suggested to originate from a first-order structural transition accompanied by Jahn-Teller (JT) transition. With increasing Cr doping content, the JT transition temperature decreases. The Cr doping suppresses the antiferromagnetic (AFM) state and makes the system spin-glass (SG) behavior at low temperatures. In the vicinity of JT transition temperatures, the softening of Young's modulus originating from the coupling of the orbital (quadrupolar) moment of the eg orbital of Mn3+ ion to the elastic strain has been observed. The anomalous Young's modulus properties imply the electron-phonon coupling due to the JT effect may play an important role in the system.  相似文献   

2.
The ac electrical properties of 5-10% Fe doped polycrystalline sample have been investigated by complex impedance analysis over the frequency and temperature ranges of 1-100 kHz and 77-300 K, respectively. The average normalized change (ΔZ′/Δf)/Z0 has been deduced for these Fe doped CMR samples which shows an increasing trend with iron doping. The most pronounced effect of frequencies is at Tc, with the increase of Fe doping it is observed that not only Tc is lowered substantially but also the height of the peaks of real part of impedance (Z′) is increased which in turn decreases considerably with the increase of the ac field. An equivalent circuit model, Rg(RgbCgb), i.e. a resistor-capacitor network, has been proposed to explain the impedance results at different temperatures. The plot between τ and 1/T gives a straight line from where relaxation time (τ0) has been deduced. The correlated barrier hopping (CBH) model has been employed and the binding energy of the defect states is estimated to be between 0.39 and 0.25 eV while the minimum hoping distance varies within the range of 2.93-5.21 Å for these 5-10% Fe doped LCM samples.  相似文献   

3.
The influence of SiO2 on the electrical transport properties of LCMO/SiO2 composites with different SiO2 contents x is investigated, where LCMO represents La2/3Ca1/3MnO3. Results show that the SiO2 phase not only shifts the metal–insulator transition temperature (Tp) to a high temperature range, but also has an effect on the magnetoresistance (MR) of the composites. The temperature dependence of resistivity indicates that the Tp of the composites is obviously higher than that of pure LCMO, and that the peak resistivity ρmax of the composites is lower than that of pure LCMO. In the SiO2 content x∼0.02, the TP is the highest and ρmax becomes the lowest. The experimental observation is discussed on the basis of the analysis of scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns. Compared with pure LCMO, a possible interpretation is presented by considering the influence of SiO2 on the coupling between ferromagnetic (FM) domains of LCMO.  相似文献   

4.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

5.
The effect of Co doping at Mn-site on the structural, magnetic and electrical transport properties in electron-doped manganties La0.9Te0.1Mn1−xCoxO3 (0≤x≤0.25) has been investigated. The room temperature structural transition from rhombohedra to orthorhombic (Pbnm) symmetry is found in these samples with x≥0.20 by the Rietveld refinement of X-ray powder diffraction patterns. All samples undergo the paramagnetic-ferromagnetic (PM-FM) phase transition. The Curie temperature TC of these samples decreases and the transition becomes broader with increasing Co-doping level. The magnetization magnitude of Co-doping samples increases at low temperatures with increasing Co-doping level for x≤0.15 and decreases with increasing Co-doping content further. The metal-insulator (M-I) transitions observed in the sample with x=0 are completely suppressed with Co doping, and the resistivity displays semiconducting behavior within the measured temperature region for these samples with x>0. All results are discussed according to the changes of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, the different effects between the Co doping and Cu doping in the Mn site for the electron-doped manganites are also discussed.  相似文献   

6.
Static computer simulation techniques have been employed for structural investigation of the La1−xSrxVO3 series. Potential parameters for V3+-O2− and V4+-O2− have been derived which reproduces the crystal structures of end members with sufficient accuracy. Variations of lattice parameters and bond distances with Sr concentration have been studied. The calculated lattice parameters decrease with increase in the Sr concentration. A structural phase transition from orthorhombic to cubic is observed at 50% Sr doping level.  相似文献   

7.
The magnetic and transport properties of nanocrystalline ZnxFe3−xO4 with x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, respectively, fabricated by the sol-gel method have been investigated. Large magnetoresistance (MR) was observed and found to be originated both from the tunneling of the spin-polarized electrons across the adjacent ferromagnetic grains and the scattering by the canted spins at the grain surface near the grain boundaries. It has been revealed that the MR for the ZnxFe3−xO4 samples (x=0, 0.5 and 1.0) increases with the temperature decreasing from room temperature until a maximum is reached at around 55 K. Then a sharp drop occurs with the further decrease in temperature, regarded as a spin (cluster) glass transition. For the samples studied, a biggest low field (0.5 T) MR value of about 20% for x=0 at 55 K has been obtained. The mechanism of the MR behavior of the materials was discussed.  相似文献   

8.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

9.
Magnetoresistive La0.67−yYyBa0.33MnO3/LaAlO3 thin films were prepared by the sol-gel spin-coating method. Our resistivity and the electron spin resonance (ESR) measurements indicate that the main factor determining the metal-insulator transition temperature Tm is the cation disorder represented by the cation radii variance σ2, and that ferromagnetic insulating regions coexist in the ferromagnetic metallic phase. In the paramagnetic phase, the dissociation energy of spin clusters and the polaron hopping energy obtained from the ESR intensity and linewidth also displayed a prominent dependence on σ2. Polaron localization due to Jahn-Teller distortions appears to be responsible simultaneously for the decrease in the ferromagnetic order and for the increase in the orbital order.  相似文献   

10.
The influence of dc current on the resistivity ρ and the Young's modulus E of La0.5Ca0.5MnO3 compound has been investigated by means of an in situ measuring method. At low temperatures, both the resistivity ρ and the relative modulus ΔE increase with the current. A relaxation behavior of ρ to the higher resistive state is observed at a fixed temperature and a constant current. After storing the sample for a few days, ρ decreases with the current, accompanying a slight drop of ΔE at low temperatures. Current-induced effects on ρ and ΔE are interpreted according to the current-induced interwinning of Mn3+O6 octahedral distortion modes between Q2- and Q3-types, which is suggested to contribute to the variation of the resistivity.  相似文献   

11.
The electroresistance (ER) of La0.67Ca0.33MnO3 (LCMO) epitaxial thin films with different thicknesses was studied. For the 110 nm thick LCMO film, its ER shows a maximum at Tp, where the resistance shows a peak, and decreases to zero at lower temperatures. While for the 30 nm thick LCMO film, its ER is remarkable in a wide temperature range. Another interesting observation in this work is that the electric current can tune the magnetoresistance of the ultrathin LCMO thin film. The results were discussed by considering the coexistence of ferromagnetic metallic phase with the charge ordered phase, and the variation of the phase separation with film thickness and electric current. This work also demonstrates that electric current can tune the magnetoresistance of the manganites, which is helpful for their applications.  相似文献   

12.
The electronic transport behavior of La0.67Sr0.33MnO3 epitaxial thin films with different thicknesses has been investigated under various applied DC currents. The 20 and 70 nm thick films show a giant negative electroresistance (ER). In contrast, the films with 100 nm thickness show unusual giant positive ER, which can reach 30% with the current density of 1.8×108 A/cm2 at room temperature. It is interesting that the electric current can also change the magnetoresistance of the films. The results were explained by considering the spin polarized current induced increase of ferromagnetic metallic phase and current-induced lattice distortion via electron wind force under high current density.  相似文献   

13.
The evolution of magnetic and electrical phases in La0.8−δCa0.2MnO3 was investigated in terms of La deficiency. We found that the increase of the La deficiency tends to raise the Curie temperature (TC) in La0.8−δCa0.2MnO3. The FM clusters formed in compounds with large La deficiency provide percolation paths above TC. With increasing the La defect, the transport property changes from insulating to metallic state, which is in association with the crossover from a second order to a first order magnetic phase transition in the vicinity of TC.  相似文献   

14.
Oxidative (δ>0) nonstoichiometry in the perovskite ‘LaMnO3+δ’ has been known to be manifested not with O interstitials but rather with cation vacancies of equal amounts at the two cation sites, La and Mn, i.e. La1−xMn1−yO3 with x=y. Here, we report the fabrication of samples with record-high cation-vacancy concentrations (x>0.12 or δ>0.4) by means of a variety of high-pressure oxygenation techniques. Linear (negative) dependence of the cell volume on x was observed within the whole x range investigated, down to 56.9 Å3 (per formula unit) for a sample oxygenated at 5 GPa and 1100 °C using Ag2O2 as an excess oxygen source. With increasing degree of cation deficiency in La1−xMn1−xO3, the ferromagnetic transition temperature was found to follow a bell shape with respect to x exhibiting a maximum of ∼250 K about x≈0.1. For moderately oxygenated samples large magnetoresistance effect was evidenced.  相似文献   

15.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

16.
The magnetism and transport properties of the samples LaMn1−xTixO3 (0≤x≤0.2) were investigated. All samples show a rhombohedral structure () at room temperature. The sample with x=0 undergoes the paramagnetic-ferromagnetic (PM-FM) transition accompanied by an insulator-metal (I-M) transition due to the oxygen excess. The doped samples show ferromagnetism and cluster behavior at low temperatures. Though no I-M transition associated with the PM-FM transition appears, the magnetoresistance (MR) effect was observed especially at low temperatures under the applied fields of 0.5 T. Due to the fact that the oxygen content in the Ti-doped samples is nearly stochiometry (3.01) and the Hall resistivity at room temperature is negative, the ferromagnetism in LaMn1−xTixO3 (0.05≤x≤0.2) is believed to be consistent with the Mn2+-O-Mn3+ double exchange (DE) mechanism. These results suggest that DE can be obtained by direct Mn-site doping.  相似文献   

17.
Effects of doping Na on the structure, electrical and magnetic properties of La2/3Ca1/3MnO3 are investigated. A structural phase transition from orthorhombic to rhombohedral structure takes place at y=0.375. All samples show metal-insulator (M-I) transition at the transition temperature and undergo the transition from paramagnetism to ferromagnetism at the Curie temperature TC. and TC increase monotonically with increasing Na content. However the Na-doped samples have a shoulder in their electrical transport curves found below and shows a widened magnetic transition process. On the other hand, intrinsic colossal magnetoresistance (CMR) peaks are observed in all the samples, but samples with y around 0.25 show two MR peaks which can be attributed to magnetic inhomogeneity induced by the doped Na+ ions. Here we propose a method to broaden the CMR peak of perovskite manganite, which is beneficial for practical applications.  相似文献   

18.
The substitution of manganese for cobalt in the perovskite La 0.8 Sr 0.2 CoO 3 has been studied. A significant increase of the magnetoresistance (MR) is obtained, reaching 60% at 5 K under 7 T for . This behavior originates from a spectacular increase of the resistivity correlated to a significant decrease of ferromagnetism by Mn doping. This enhancement of magnetoresistance can be interpreted by the growth of ferromagnetic clusters in the insulating matrix, by applying a magnetic field. Received 7 May 1999  相似文献   

19.
20.
Electron paramagnetic resonance on La2/3−xYxCa1/3MnO3 in the paramagnetic (PM) regime is presented for 0≤x≤0.133. The resonance linewidth (ΔHpp) decreases with cooling, reaches the minimum at Tmin, and then anomalously increases with further cooling toward Tc. Our analysis on ΔHpp(T) below Tmin shows that the anomalous PM behavior below Tmin is due to the appearance of a ferromagnetic (FM) phase within the PM matrix caused by the applied magnetic fields. The correlation between the anomalous PM and the colossal magnetoresistance is discussed. We argue that both are caused by the phase segregation in which the compound is phase-separated into a mixture of FM and PM regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号