首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline zinc nitride films have been synthesized onto quartz substrates from the zinc nitride target and the nitrogen working gas by reactive rf magnetron sputtering at room temperature. X-ray diffraction study indicates that polycrystalline zinc nitride films are of cubic structure with the lattice constant a = 0.979(1) nm and have preferred orientations with (3 2 1) and (4 4 2). Its absorption coefficients as well as the film thickness are calculated from the transmission spectra, which are measured with a double beam spectrophotometer. The optical band gap has been determined from the photon energy dependence of absorption coefficient, an indirect transition optical band gap of 2.12(3) eV has been obtained.  相似文献   

2.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

3.
The optical functions of iron disilicide (β-FeSi2) thin epitaxial films are calculated from the reflectance spectra in the energy range 0.1–6.2 eV with the use of the Kramers-Kronig (KK) integral relations. A comparison of the results of calculations from the transmittance and reflectance spectra and the data obtained from the reflectance spectra in terms of the Kramers-Kronig relations indicates that the fundamental transition at an energy of 0.87±0.01 eV is a direct transition. An empirical model is proposed for the dielectric function of β-FeSi2 epitaxial films. Within this model, the specific features in the electronic energy-band structure of the epitaxial films are described in an analytical form. It is shown that the maximum contributions to the dielectric function and the reflectance spectrum in the energy range 0.9–1.2 eV are made by the 2D M 0-type second harmonic oscillator with an energy of 0.977 eV. This oscillator correlates with the second direct interband transition observed in the energy-band structure of β-FeSi2.  相似文献   

4.
Spectroscopic ellipsometry measurements on TlGaSe2, TlGaS2 and TlInS2 layered crystals were carried out on the layer-plane (0 0 1) surfaces, which are perpendicular to the optic axis c?, in the 1.2–6.2 eV spectral range at room temperature. The real and imaginary parts of the pseudodielectric function as well as pseudorefractive index and pseudoextinction coefficient were found as a result of analysis of ellipsometric data. The structures of critical points in the above-band gap energy range have been characterized from the second derivative spectra of the pseudodielectric function. The analysis revealed four, five and three interband transition structures with critical point energies 2.75, 3.13, 3.72 and 4.45 eV (TlGaSe2), 3.03, 3.24, 3.53, 4.20 and 4.83 eV (TlGaS2), and 3.50, 3.85 and 4.50 eV (TlInS2). For TlGaSe2 crystals, the determined critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure.  相似文献   

5.
The photoreflectance (PR) spectroscopy has been applied to investigate the band-gap energy (Eg) of indium nitride (InN) thin films grown by rf magnetron sputtering. A novel reactive gas-timing technique applied for the sputtering process has been successfully employed to grow InN thin films without neither substrate heating nor post annealing. The X-ray diffraction (XRD) patterns exhibit strong peaks in the orientation along (0 0 2) and (1 0 1) planes, corresponding to the polycrystalline hexagonal-InN structure. The band-gap transition energy of InN was determined by fitting the PR spectra to a theoretical line shape. The PR results show the band-gap energy at 1.18 eV for hexagonal-InN thin films deposited at the rf powers of 100 and 200 W. The high rf sputtering powers in combination with the gas-timing technique should lead to a high concentration of highly excited nitrogen ions in the plasma, which enables the formation of InN without substrate heating. Auger electron spectroscopy (AES) measurements further reveal traces of oxygen in these InN films. This should explain the elevated band-gap energy, in reference to the band-gap value of 0.7 eV for pristine InN films.  相似文献   

6.
A high-quality ZnNb2O6 single-crystal grown by optical floating zone method has been used as a research prototype to analyze the optoelectronic parameters by measuring the absorption coefficient and transmittance spectra along the b-axis from 200 nm to 1000 nm at room temperature. The optical interband transitions of ZnNb2O6 have been determined as a direct transition with a band gap of 3.84 eV. The refractive index, extinction coefficient, and real and imaginary parts of the complex dielectric constants as functions of the wavelength for ZnNb2O6 crystal are obtained from the measured absorption coefficients and transmittance spectra. In the Urbach tail of 3.16–3.60 eV, the validity of the Cauchy–Sellmeier equation has also been evaluated. Using the single effective oscillator model, the oscillator energy Eo is found to be 4.77 eV. The dispersion energy Ed is 26.88 eV and ZnNb2O6 crystal takes an ionic value.  相似文献   

7.
Effect of water vapor quantity at oxidation of undoped ZnS films on structural and luminescent properties of the obtained films was investigated. The films were deposited onto glass substrates by electron beam evaporation. ZnO-ZnS layers were prepared by thermal oxidization of ZnS films at 600 °C in dry or wet atmospheres. The films were characterized by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy. As-deposited ZnS films were sphalerite crystal structure. The “dry annealing” led to the ZnS phase transition from sphalerite to wurtzite structure and from ZnS to ZnO for a small fraction of the film. After the “wet annealing” the amount of ZnO phase with wurtzite structure growing along the 〈0 0 0 2〉 direction varied from 25% to 95% in dependence on the water vapor quantity. Photoluminescent spectrum at room temperature exhibits green emission with maximum at 2.4 eV. A strong influence of the water vapor on shape and intensity of the emission was observed. Photoluminescent spectra at 22 K consisted of two bands—high-energy band at 2.1-2.4 eV and low energy band at 1.7-1.8 eV. Location and intensity ratio depended on the preparation conditions.  相似文献   

8.
The effect of hydrogen plasma irradiation on luminescence properties of ZnO thin films was studied by using a pulse-modulated inductively coupled plasma technique. H-plasma exposure distance was changed to investigate the effect of hydrogen plasma irradiation on luminescent properties. Room temperature cathodoluminescence (CL) spectrum shows that hydrogen plasma irradiation can increase the efficiency of UV emission at 3.27 eV, and the improvement is strongly dependent on H-plasma exposure distance. For low temperature CL spectra, the intensity of donor-acceptor pair (DAP) transition at 3.315 eV has been increased more rapidly after hydrogen plasma irradiation, leading DAP to be the dominant transition.  相似文献   

9.
Zinc nitride films were prepared on quartz substrates by rf magnetron sputtering using pure zinc target in N2-Ar plasma. X-ray diffraction (XRD) analysis indicates that the films just after deposition are polycrystalline with a cubic structure and a preferred orientation of (4 0 0). X-ray photoelectron spectroscopy (XPS) analysis also confirms the formation of N-Zn bonds and the substitution incorporation of oxygen for nitrogen on the surface of the films. The optical band gap is calculated from the transmittance spectra of films just after deposition, and a direct band gap of 1.01 ± 0.02 eV is obtained. Room temperature PL measurement is also performed to investigate the effect of defect on the band gap and quality of the zinc nitride films.  相似文献   

10.
Electron energy loss spectra (ELS) have been obtained from polycrystalline Cr and Cr2O3 before and after surface reduction by 2 keV Ar+ bombardment. The primary electron energy used in the ELS measurements was systematically varied from 100 to 1150 eV in order to distinguish surface versus bulk loss processes. Two predominant loss features in the ELS spectra obtained from Cr metal at 9.0 and 23.0 eV are assigned to the surface and bulk plasmon excitations, respectively, and a number of other features arising from single electron transitions from both the bulk and surface Cr 3d bands to higher-lying states in the conduction band are also present. The ELS spectra obtained from Cr2O3 exhibit features that originate from both interband transitions and charge-transfer transitions between the Cr and O ions as well as the bulk plasmon at 24.4 eV. The ELS feature at 4.0 eV arises from a charge-transfer transition between the oxygen and chromium ions in the two surface layers beneath the chemisorbed oxygen layer, and the ELS feature at 9.8 eV arises from a similar transition involving the chemisorbed oxygen atoms. The intensity of the ELS peak at 9.8 eV decreases after Ar+ sputtering due to the removal of chemisorbed oxygen atoms. Sputtering also increases the number of Cr2+ states on the surface, which in turn increases the intensity of the 4.0 eV feature. Furthermore, the ELS spectra obtained from the sputtered Cr2O3 surface exhibit features characteristic of both Cr0 and Cr2O3, indicating that Ar+ sputtering reduces Cr2O3. The fact that neither the surface- nor the bulk-plasmon features of Cr0 can be observed in the ELS spectra obtained from sputtered Cr2O3 while the loss features due to Cr0 interband transitions are clearly present indicates that Cr0 atoms form small clusters lacking a bulk metallic nature during Ar+ bombardment of Cr2O3.  相似文献   

11.
The photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals have been investigated as a function of temperature and external electric field. It has been observed that the exciton peaks shift to lower energy in GaSe0.9Te0.1 alloy crystals compared to GaSe crystals. The long wavelength tails of interband photoluminescence, photoconductivity and absorption spectra are determined by the free exciton states and show an Urbach-Martienssen-type dependence to the photon energy. The maxima of the extrinsic photoluminescence and photoconductivity spectra were found to be determined by the acceptor centers with an energy of EA=EV+0.19 eV formed by the polytypism and defects complexes that include Se and Te anions.  相似文献   

12.
Single crystals of the layered compound TlInS2 were grown by direct synthesis of their constituents. The spectral and optical parameters have been determined using spectrophotometric measurements of transmittance and reflectance in the wavelength range 200–2500 nm. Absorption spectra of thin layers of TlInS2 crystals are used to study the energy gap and the interband transitions of the compound in the energy region 2–2.4 eV. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal one in the transmitted region. The direct and indirect band gaps were determined to be 2.34 and 2.258 eV, respectively. Photoconductivity measurements at room temperature resolve the structure that can be identified with the optical transition.  相似文献   

13.
Semiconducting molecular materials based on aluminum phthalocyanine chloride (AlPcCl) and bidentate amines have been successfully used to prepare thin films by using a thermal evaporation technique. The morphology of the deposited films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Studies of the optical properties were carried out on films deposited onto quartz and (1 0 0) monocrystalline silicon wafers and films annealed after deposition. The absorption spectra recorded in the UV–vis region for the as-deposited and annealed samples showed two absorption bands, namely the Q- and B-bands. In addition, an energy doublet in the absorption spectra of the monoclinic form at 1.81 and 1.99 eV was observed. A band-model theory was employed in order to determine the optical parameters. The fundamental energy gap (direct transitions) was determined to be within the 2.47–2.59 and 2.24–2.44 eV ranges, respectively, for the as-deposited and annealed thin films.  相似文献   

14.
Optical reflectance of YBa2Cu3O7- thin films grown by laser ablation is measured within photon energies of 0.1 eV to 3.5 eV at room temperature. The spectra can be fit congruently with the anisotropic dielectric constants which take account of the intraband free carrier transition and interband transition. The anisotropic plasma frequencies are simulated to be pl=2.18 eV and ch=2.80 eV contributed from free carriers on the plane and in the chain, respectively. The interband transition occurs near 2.5 eV and is pertinent to a rather broad line width.  相似文献   

15.
Optical transmittance and reflectance on ferroelectric BaTi2O5 glasses prepared recently by a containerless synthesis technique are measured at room temperature in the wavelength range 190-800nm. The fundamental absorption edge located around 340nm demonstrates the colourless and transparent character of the glass. The optical band gap of 3.32eV has been estimated. The tail of the optical absorption near the fundamental absorption edge is found to follow the Urbach rule. Our analysis of the experimental spectra supports an indirect allowed interband transition between the valence band formed by O-2p orbitals and the conduction band formed by Ti-3d orbitals.  相似文献   

16.
The optical constants of EuO and EuS single crystals have been determined at 300 K by means of a Kramers-Kronig analysis of the reflectivity for photon energies up to 12 eV. For EuS the optical constants have also been determined above and below the Curie temperature in the energy region from 1.5 to 5.7 eV. A first tentative assignment of optical structure to interband transitions has been attempted on the basis of recent orthogonal plane wave (OPW) and earlier augmented plane wave (APW) band structure calculations. For photon energies from 1.2 to 3.8 eV a low magnetic field-modulated magnetoreflectance has been measured using circularly polarized light. By use of the Kramers-Kronig relation for the differential reflectance spectra in conjunction with our data of the optical constants, a detailed analysis of the magnetoreflectance spectra of EuS was carried out for the first time.  相似文献   

17.
ZnS films have been deposited on glass substrates by close-spaced evaporation (CSE) technique. The films were grown at different temperatures in the range, 200-350 °C. The layers have been characterized with X-ray diffractometer (XRD), atomic force microscope (AFM), energy dispersive analysis of X-rays (EDAX) and optical spectrophotometer to evaluate the quality of the layers for photovoltaic applications. The studies showed that the optimum substrate temperature for the growth of ZnS layers was 300 °C. The films grown at these temperatures exhibited cubic structure with nearly stoichiometric composition. The AFM data revealed that the films had nano-sized grains with a grain size of ∼40 nm. The optical studies exhibited direct allowed transition with an energy band gap of 3.61 eV. The other structural and optical parameters such as lattice stress, dislocation density, refractive index and extinction coefficient were also evaluated. The temperature-dependent conductivity measured in the range, 303-523 K showed a change in the conduction mechanism at 120 °C. The activation energy values evaluated using the temperature dependence of electrical conductivity are 7 and 29 meV at low and high temperature regions, respectively.  相似文献   

18.
Single-crystal Eu3+-doped wurtzite ZnO micro- and nanowires were synthesized by chemical vapor deposition. The nanostructures grew via a self-catalytic mechanism on the walls of an alumina boat. The structure and properties of the doped ZnO were characterized using X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning and transmission electron microscopy, and photoluminescence (PL) methods. A 10-min synthesis yielded vertically grown nanowires of 50–400 nm in diameter and several micrometers long. The nanowires grew along the ±[0001] direction. The Eu3+ concentration in the nanowires was 0.8 at.%. The crystal structure and microstructure of were compared for Eu3+-doped and undoped ZnO. PL spectra showed a red shift in emission for Eu3+-doped (2.02 eV) compared to undoped ZnO nanowires (2.37 eV) due to Eu3+ intraionic transitions. Diffuse reflectance spectra revealed widening of the optical bandgap by 0.12 eV for Eu3+-doped compared to undoped ZnO to yield a value of 3.31 eV. Fourier-transform infrared spectra confirmed the presence of europium in the ZnO nanowires.  相似文献   

19.
D. Ammi 《Surface science》2004,554(1):60-67
We report ab initio calculations of the anisotropic dielectric function of tungsten (1 1 0) surface using the linear muffin-tin-orbital method. The calculated anisotropy in the optical spectrum, for polarization of light parallel to the surface, exhibits three dominant broad structures at 3.00, 4.01 and 5.34 eV successively positive, negative and then positive. The first peak is clearly assigned to p → d interband transitions in surface atomic sites whereas the two others have their origin in interband transitions in bulk like atoms. Our results, including the interlayer relaxation effect on the surface optical response, are compared to recent reflectance anisotropy measurements.  相似文献   

20.
Electroluminescence (EL) properties of Si-based light emitting diodes with β-FeSi2 particles active region grown by reactive deposition epitaxy are investigated. EL intensity of β-FeSi2 particles versus excitation current densities has different behaviors at 8, 77 K and room temperature, respectively. The EL peak energy shifted from 0.81 to 0.83 eV at 77 K with the increase of current density from 1 to 70 A/cm2. Temperature dependence of the peak energy can be well fitted by semi-empirical Varshni's law with the parameters of α=4.34 e-4 eV/K and β=110 K. These results indicate that the EL emission originates from the band-to-band transition with the band gap energy of 0.824 eV at 0 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号