首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

2.
The roles of aliovalent CaII-for-YIII substitution and high-pressure-oxygen annealing in the process of ‘superconducterizing’ the Co-based layered copper oxide, CoSr2(Y1−xCax)Cu2O7+δ (Co-1212), were investigated. The as-air-synthesized samples up to x=0.4 were found essentially oxygen stoichiometric (−0.03≤δ≤0.00). These samples, however, were not superconducting, suggesting that the holes created by the divalent-for-trivalent cation substitution are trapped on Co in the charge reservoir. Ultra-high-pressure heat treatment carried out at 5 GPa and 500 °C for 30 min in the presence of Ag2O2 as an excess oxygen source induced bulk superconductivity in these samples. The highest Tc was obtained for the high-oxygen-pressure treated x=0.3 sample at ∼40 K.  相似文献   

3.
Polycrystalline La2−xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x=0.1-0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centres in the unit cell leading to increase in critical current density and flux pinning.  相似文献   

4.
A critical review of previous investigations of the superconductivity with enhanced Tc ∼ 95 K found in Sr2CuO4−v shows that new physics occurs in a highly overdoped region of the cuprate phase diagram. Moreover, evidence is adduced from the literature that 30% of the oxygen sites in the CuO2 layers are vacant; a conclusion which is at odds with the universally made assumption that superconductivity originates in stoichiometric CuO2 layers. While further research is needed in order to identify the pairing mechanism(s) responsible for the enhanced Tc, we suggest possible candidates.  相似文献   

5.
The structural, superconducting and magnetic properties of La2Cu1−xZnxO4+δ (0≤x≤0.1) chemically oxidized by NaClO at room temperature were studied. All the samples before and after oxidation are single phase with orthorhombic structure, as indicated by their powder X-ray diffraction analysis. The iodometric titration results indicate that Zn-substituted La2Cu1−xZnxO4 is more favorable for the insertion of the excess oxygen, as compared to the Zn-free La2CuO4. The Tc suppression rate resulting from Zn substitution in La2Cu1−xZnxO4+δ is −12.4 K/%. The effective magnetic moment induced by the non-magnetic Zn ion is the order of one Bohr magneton, which decreases with increasing the Zn concentrations in the range examined. The latter two results are qualitatively well consistent with those obtained in La2−xSrxCu1−yZnyO4 with the Sr optimal doping. This reveals that the non-magnetic Zn ions play the same role in both of the La2Cu1−xZnxO4+δ with the excess oxygen content of about 0.1 and the La2−xSrxCu1−yZnyO4 with the Sr optimal doping.  相似文献   

6.
The effect of Cu-doping at Mo-site on structural, magnetic, electrical transport and specific heat properties in molybdates SrMo1−xCuxO3 (0≤x≤0.2) has been investigated. The Cu-doping at Mo-site does not change the space group of the samples, but decreases the structural parameter a monotonously. The magnetic properties change from Pauli-paramagnetism for x=0 to exchange-enhanced Pauli-paramagnetism for x=0.05 and 0.10, and then ferromagnetism for x=0.15 and 0.20. All samples exhibit metallic-like transport behavior in the whole temperature range studied. The magnitude of resistivity increases initially to x=0.10 and then decreases with increasing Cu-doping concentration. The results are discussed according to the electron localization due to the disorder effect induced by the random distribution of Cu at Mo site in the samples. In addition, the temperature dependence of specific heat for the Cu-doped sample has also been studied.  相似文献   

7.
(Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 (M=Co, Ni and Zn) have been synthesized and investigated by means of X-ray diffraction, scanning electron microscope, electrical resistivity and magnetic susceptibility measurements. X-ray diffraction patterns show that all studied samples contain the nearly single ‘1212’ phase. They crystallize in a tetragonal unit cell with a=3.8028-3.8040 Å and c=12.0748-12.1558 Å. In (Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 system (M=Co or Ni), the superconducting critical temperature Tc decreases linearly with both Co and Ni concentrations and the rate of Tc decrease is around −6.5 and −7.0 K/at%, respectively. For (Tl0.5Pb0.5)Sr2Ca (Cu2−xZnx)O7 system, the dependence of Tc on the Zn dopant concentration deviates from a linear behavior and the Zn substitution suppresses Tc much less (−2.5 K/at%) than the Co and Ni substitutions. The suppression in Tc in Co and Ni doped samples are attributed to the magnetic pair-breaking mechanism and the reduction in the carrier concentration. The suppression of Tc in Zn doped samples is not caused by the reduction in carrier concentration which should remain constant, but rather due to nonmagnetic pair-breaking mechanism induced by disorder as well as the filling of the local Cu dx2y2 state due to the full d band of Zn ions.  相似文献   

8.
Studies on La0.7Sr0.3Co1−xMnxO3 (x=0-0.5) compounds evidence that the interaction between Mn and Co ions in this system is antiferromagnetic super-exchange and not ferromagnetic (FM) double-exchange (DE). As a result, antiferromagnetism and magnetic glassiness develop steadily with increasing Mn content and the system becomes a spin glass at x∼0.1. Analyses of high-field magnetization data indicate that the system consists of two major phases: a metallic FM phase which magnetically saturates in rather low field, and an insulating non-FM phase which has a linear dependence of magnetization on magnetic field. In the low doping regime, the fraction of the non-FM component expands with temperature at the expense of the FM phase and becomes maximal at TC. Ferromagnetism reappears in highly doped (x≥0.2) compounds due to the presence of DE interaction between the Mn ions. The small volume fraction of the FM phase derived from the M(H) data in high-field region supports the coexistence of insulating and FM behaviors in the highly doped samples.  相似文献   

9.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

10.
The effect of Mn substitution for Cu in mixed-valence Mn doped La1.85−(4/3)xSr0.15+(4/3)xCu1−xMnxO4 (x=0.06) has been investigated by electric resistivity, magnetization and electron spin resonance experiments. Coexistence of superconductivity and ferromagnetism was observed.  相似文献   

11.
Thermal conductivity (λ) of nanocrystalline La0.67(CaxSr1−x)0.33MnO3 (x=0, 0.5, 1) and La0.6Y0.07Ca0.33MnO3 pellets prepared by a novel ‘pyrophoric’ method have been studied between the temperature range 10 and 300 K. Our data show that the magnitude of thermal conductivity is strongly influenced by the ion substitutions at La-site. The analysis of the thermal conductivity data indicates that the thermal transport is governed largely by phonons scattering in these systems and the electronic contribution is as small as 0.2-1% of total thermal conductivity (λtotal). At low temperatures (<90 K) 2D like lattice defects contribute to the phonon scattering dominantly and its strength increases with increasing Sr content and also with partial substitution of La by Y. Depending upon the composition of the samples, the magnon thermal conductivity contributes 2-15% of λtotal close to TC. In the paramagnetic regime the unusual increase in λtotal keeps signature of large dynamic lattice distortion.  相似文献   

12.
We have investigated the magnetic phase diagram of polycrystalline and single-crystal La1−xSrxMnO3 near 0.46≤x≤0.50. It turns out that for x<0.48, the polycrystalline material is ferromagnetic (FM), but for x≥0.48, incipient charge ordering takes place along with antiferromagnetism. At x=0.48, the ferromagnetic-antiferromagnetic phase transition in ceramics occurs at less than 85 kOe but requires significantly larger field for increasing x. These observations are in contrast to what is found in the single crystals, which are all FM.  相似文献   

13.
Oxidative (δ>0) nonstoichiometry in the perovskite ‘LaMnO3+δ’ has been known to be manifested not with O interstitials but rather with cation vacancies of equal amounts at the two cation sites, La and Mn, i.e. La1−xMn1−yO3 with x=y. Here, we report the fabrication of samples with record-high cation-vacancy concentrations (x>0.12 or δ>0.4) by means of a variety of high-pressure oxygenation techniques. Linear (negative) dependence of the cell volume on x was observed within the whole x range investigated, down to 56.9 Å3 (per formula unit) for a sample oxygenated at 5 GPa and 1100 °C using Ag2O2 as an excess oxygen source. With increasing degree of cation deficiency in La1−xMn1−xO3, the ferromagnetic transition temperature was found to follow a bell shape with respect to x exhibiting a maximum of ∼250 K about x≈0.1. For moderately oxygenated samples large magnetoresistance effect was evidenced.  相似文献   

14.
The ferroelectric compounds Pb2Na1−xLaxNb5−xFexO15 and Pb0.5(5−x)LaxNb5−xFexO15 (0≤x≤1) with the tungsten bronze type structure have been investigated using Raman spectroscopy. The evolution of the spectra as a function of composition at room temperature is reported. In the frequency range 200-1000 cm−1 three main A1 phonons around 240 (υ1), 630 (υ2) and 816 (υ3) cm−1 were observed. The broadening of the Raman lines for high values of x originates from a significant structural disorder. This is in good agreement with the relaxor character of these compositions. The lowest-frequency part of the spectra, below 180 cm−1, reveals a structural change in the studied solid solutions. The behaviour of the Raman shift of the υ1 mode confirms that in Pb2Na1−xLaxNb5−xFexO15, a clear anomaly occurs in the vicinity of x=0.4.  相似文献   

15.
The structure, lattice dynamics and electronic band structure of Ni43.75Fe6.25Ti50 were obtained using ab initio calculations. The phonon dispersion relations and phonon density of states were calculated using the direct method. The stability of Ni50−xFexTi50 structure for x=0.0, 6.25, 12.5, 25 has been investigated and shown that the orthorhombic structure is the most stable phase for x=25.  相似文献   

16.
The Nd(Ba1−xNdx)2Cu3O7+δ solid solution, Nd123ss, has been investigated by neutron powder diffraction and Rietveld analysis. It is confirmed that the crystal structure of its Nd-rich limit, Nd(Ba0.55Nd0.45)2Cu3O7.33, is satisfactorily described in the space group Bmmm (a=7.7679(3), b=3.8542(1), and c=22.9590(9) Å). The fourfold superstructure with respect to the orthorhombic cell of YBCO is due to ordering between Ba and Nd atoms in the bridging layer. Differences with previous works concern exclusively the distribution of O atoms in the ‘chain’ layer. Our results give strong indications that ordering also occurs for lower Nd contents.  相似文献   

17.
Both oxygen and calcium play important roles in inducing superconductivity in Y Ba2Cu3Oy (YBCO), which is an antiferromagnetic insulator at low O and Ca content. O induces superconductivity in Ca-free YBCO, while Ca does similarly in oxygen-deficient YBCO. For doping oxygen HgO was used as it decomposes at 476 °C into Hg, which escapes from the matrix leaving the crystal unaltered, and O, which provide a way to dope O in YBCO. Considering these facts, polycrystalline samples of Y 1−xCaxBa2Cu3Oy with x=0, 0.1 and 0.2 with and without HgO addition were prepared through a solid-state reaction method. The samples were sintered at 950 °C in open atmosphere. These synthesized samples were characterized through using the X-ray diffraction technique (XRD) for phase evaluation, scanning electron microscopy (SEM) for grain morphology, energy dispersive X-ray analysis (EDX) for compositional analysis and the four-contact measurement technique for determining the superconducting transition temperature.  相似文献   

18.
The relaxor behavior was revealed in the solid solution (1−x)BaSnO3-xPbTiO3[(1−x)BSn-xPT] with compositions near x=0.50. The real permittivity (ε) and loss tangent (tanδ) exhibit diffuse and dispersive maxima, whose temperature shifts towards a higher temperature upon the increasing frequency. The frequency dependence of the temperature of the dielectric maximum (Tm) follows the Vogel-Fulcher law, as in the canonical relaxor. A deviation from the Curie-Weiss law was observed below the Burns temperature (TB) and well above the Curie temperature (TC). These phenomena are well consistent with typical relaxors, which explains the existence of the relaxor behavior in the (1−x)BSn-xPT solid solution.  相似文献   

19.
The conducting oxides solid solutions of Cd1+xIn2−2xSnxO4 (x=0.1, 0.3, 0.5, 0.7, 1.0) were prepared via a solid state reaction method. The band gaps were estimated to be 2.4 eV for x=1.0, 2.5 eV for x=0.7, 2.6 eV for x=0.5, 2.7 eV for x=0.3 and 2.8 eV for x=0.1. Oxygen could be evolved over Cd2SnO4 under the irradiation of Xe-lamp or even visible light (λ>420 nm), while the others could only work in the UV-light range. Raman showed the cation distribution in Cd2SnO4 is ordered, while that in the others is disordered. The cations distribution was proposed to be the cause of the difference in photocatalytic O2-evolution activities.  相似文献   

20.
This study shows that remarkable electric and magnetic properties are encountered within the (1−x)Na0.5Bi0.5TiO3 (NBT)-(x)BiFeO3 (BF) solid solution. Dual ferroelectric and magnetic properties are observed in the BF-rich part of the solid solution implying intrinsic multiferroic character of the compounds. In addition, a relaxation phenomenon is evidenced within the overall compositional domain of the solid solution. This study emphasizes that in the NBT-rich part, the relaxor behaviour is very similar to that of NBT, while beyond x=0.5, it turns to a different mechanism of relaxation probably induced by the presence of oxygen vacancies resulting from the mixed valence of the iron cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号