首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Age and stimulus rise time (RT) effects on response latency were investigated for inferior colliculus (IC) neurons in young-adult and old CBA mice. Single-unit responses were recorded to unmodulated and sinusoidal amplitude modulated (SAM) broadband noise carriers, presented at 35 to 80 dB SPL. Data from 63 young-adult and 76 old phasic units were analyzed to identify the time interval between stimulus onset and driven-response onset (latency). When controlling for stimulus sound level and AM frequency, significant age-related changes in latency were identified. Absolute latency decreased with age at all stimulus AM frequencies, significantly so for equivalent rise times (RT) < or = 12.5 ms. The linear correlation of latency with AM stimulus RT was significant for both young-adult and old units, and increased significantly with age. It is likely that both the decrease in absolute latency and the increase in latency/RT correlation with age are consistent with a reduction of inhibitory drive with age in the IC. These latency changes will result in age-related timing variations in brainstem responses to stimulus onsets, and therefore affect the encoding of complex sounds.  相似文献   

2.
We have examined the effects of the relative amplitude of the release burst on perception of the place of articulation of utterance-initial voiceless and voiced stop consonants. The amplitude of the burst, which occurs within the first 10-15 ms following consonant release, was systematically varied in 5-dB steps from -10 to +10 dB relative to a "normal" burst amplitude for two labial-to-alveolar synthetic speech continua--one comprising voiceless stops and the other, voiced stops. The distribution of spectral energy in the bursts for the labial and alveolar stops at the ends of the continuum was consistent with the spectrum shapes observed in natural utterances, and intermediate shapes were used for intermediate stimuli on the continuum. The results of identification tests with these stimuli showed that the relative amplitude of the burst significantly affected the perception of the place of articulation of both voiceless and voiced stops, but the effect was greater for the former than the latter. The results are consistent with a view that two basic properties contribute to the labial-alveolar distinction in English. One of these is determined by the time course of the change in amplitude in the high-frequency range (above 2500 Hz) in the few tens of ms following consonantal release, and the other is determined by the frequencies of spectral peaks associated with the second and third formants in relation to the first formant.  相似文献   

3.
Brain-stem auditory evoked responses (BAERs) were obtained in eight normal-hearing young adults. Stimuli included clicks, noise bursts, and tone bursts. Tone bursts included carrier frequencies of 1, 2, 4, and 8 kHz. All stimuli were presented at 60 dB nHL. BAERs were obtained by presenting stimuli in pseudorandom trains, called maximum length sequences (MLSs). BAERs were recovered by cross correlating the responses with a recovery sequence. MLS-BAERs were obtained with minimum pulse intervals (MPIs) of 6, 4, and 2 ms. Conventional BAERs were also obtained for stimuli presented at a rate of 30 Hz. BAERs were obtained for all stimuli, for both the conventional averaging technique and for the cross-correlation technique. BAERs were observed for MPIs as short as 2 ms for all stimuli. Wave V was the only peak consistently identifiable for these stimuli. For all stimuli, wave V latency increased and wave V amplitude decreased with decreasing MPI. This is the first demonstration of the use of maximum length sequences combined with cross correlation to obtain BAERs to noise burst and tone burst stimuli.  相似文献   

4.
Discharge patterns of auditory-nerve fibers in anesthetized cats were obtained for two stimulus levels in response to synthetic stimuli with dynamic characteristics appropriate for selected consonants. A set of stimuli was constructed by preceding a signal that was identified as /da/by another sound that was systematically manipulated so that the entire complex would sound like either /da/, /ada/, /na/, /sa/, /sa/, or others. Discharge rates of auditory-nerve fibers in response to the common /da/-like formant transitions depended on the preceding context. Average discharge rates during these transitions decreased most for fibers whose CFs were in frequency regions where the context had considerable energy. Some effect of the preceding context on fine time patterns of response to the transitions was also found, but the identity of the largest response components (which often corresponded to the formant frequencies) was in general unaffected. Thus the response patterns during the formant transitions contain cues about both the nature of the transitions and the preceding context. A second set of stimuli sounding like /s/ and /c/ was obtained by varying the duration of the rise in amplitude at the onset of a filtered noise burst. At both 45 and 60 dB SPL, there were fibers which showed a more prominent peak in discharge rate at stimulus onset for /c/ than for /s/, but the CF regions that reflected the clearest distinctions depended on stimulus level. The peaks in discharge rate that occur in response to rapid changes in amplitude or spectrum might be used by the central processor as pointers to portions of speech signals that are rich in phonetic information.  相似文献   

5.
Few studies have compared the response properties of near-field potentials from multiple levels of the auditory nervous system of unanesthetized animals. The purpose of this study was to investigate the effects of brief-duration noisebursts on neural responses recorded from electrodes chronically implanted at the round window, inferior colliculus and auditory cortex of chinchillas. Responses were obtained from seven unanesthetized chinchillas to a noiseburst-level and noiseburst-rate series. For the noiseburst-rate series, a 70 dB pSPL noiseburst was varied in rate from 10 to 100 Hz using conventional averaging procedures, and from 100 to 500 Hz using pseudorandom pulse trains called maximum length sequences (MLSs). Response thresholds were similar for the compound action potential (CAP), inferior colliculus potential (ICP) and auditory cortex potential (ACP). With decreasing noiseburst level, there were decreases in the amplitudes and increases in the latencies of the CAP, ICP and ACP. The shapes of the mean normalized amplitude input/output (I/O) functions were similar for the ICP and ACP, while the normalized I/O functions for the first positive peak (P1) and first negative peak (N1) of the CAP differed from each other and from the ICP and ACP. The slopes of the latency/intensity functions were shallowest for the CAP, intermediate for the ICP, and steepest for the ACP. With increasing rate, the latency shift was least for the CAP, intermediate for the ICP and greatest for the ACP. The amplitude of P1 of the CAP varied little with rate. All other potentials showed a pronounced decrease in amplitude at high stimulation rates. Excluding CAP P1, proportional amplitude decrease with rate was greatest for the ACP, intermediate for N1 of the CAP and least for the ICP. Responses were present in most animals at all recording sites, even for the highest rate (500 Hz) used in this study. For all potentials, the MLS procedure allowed the collection of a response at rates well above those where sequential responses would have overlapped using conventional averaging procedures.  相似文献   

6.

Background  

Autonomous reflexes enable animals to respond quickly to potential threats, prevent injury and mediate fight or flight responses. Intense acoustic stimuli with sudden onsets elicit a startle reflex while stimuli of similar intensity but with longer rise times only cause a cardiac defence response. In laboratory settings, habituation appears to affect all of these reflexes so that the response amplitude generally decreases with repeated exposure to the stimulus. The startle reflex has become a model system for the study of the neural basis of simple learning processes and emotional processing and is often used as a diagnostic tool in medical applications. However, previous studies did not allow animals to avoid the stimulus and the evolutionary function and long-term behavioural consequences of repeated startling remain speculative. In this study we investigate the follow-up behaviour associated with the startle reflex in wild-captured animals using an experimental setup that allows individuals to exhibit avoidance behaviour.  相似文献   

7.
The cerebral magnetic field of the auditory steady-state response (SSR) to sinusoidal amplitude-modulated (SAM) tones was recorded in healthy humans. The waveforms of underlying cortical source activity were calculated at multiples of the modulation frequency using the method of source space projection, which improved the signal-to-noise ratio (SNR) by a factor of 2 to 4. Since the complex amplitudes of the cortical source activity were independent of the sensor position in relation to the subject's head, a comparison of the results across experimental sessions was possible. The effect of modulation frequency on the amplitude and phase of the SSR was investigated at 30 different values between 10 and 98 Hz. At modulation frequencies between 10 and 20 Hz the SNR of harmonics near 40 Hz were predominant over the fundamental SSR. Above 30 Hz the SSR showed an almost sinusoidal waveform with an amplitude maximum at 40 Hz. The amplitude decreased with increasing modulation frequency but was significantly different from the magnetoencephalographic (MEG) background activity up to 98 Hz. Phase response at the fundamental and first harmonic decreased monotonically with increasing modulation frequency. The group delay (apparent latency) showed peaks of 72 ms at 20 Hz, 48 ms at 40 Hz, and 26 ms at 80 Hz. The effects of stimulus intensity, modulation depth, and carrier frequency on amplitude and phase of the SSR were also investigated. The SSR amplitude decreased linearly when stimulus intensity or the modulation depth were decreased in logarithmic steps. SSR amplitude decreased by a factor of 3 when carrier frequency increased from 250 to 4000 Hz. From the phase characteristics, time delays were found in the range of 0 to 6 ms for stimulus intensity, modulation depth, and carrier frequency, which were maximal at low frequencies, low intensities, or maximal modulation depth.  相似文献   

8.
The postnatal development of firing patterns and response areas was determined for single neurons in the dorsal (DCN) and posteroventral ( PVCN ) cochlear nuclei of the kitten. Extracellular, single-unit responses to pure-tone stimulation were recorded in ketamine and sodium pentobarbital anesthetized kittens between the ages of 5 and 52 days. Within the first two weeks of postnatal life threshold is high, first-spike latency is long, and maximal discharge rate is low as compared to older kittens and adult cats. Prior to the end of the second postnatal week the tone-evoked temporal discharge patterns that characterize neurons of the DCN and PVCN in the adult cat are routinely recorded. These patterns, which appear within the first 50 ms of tonal stimulation, include the so-called " primarylike ," "chopper," " pauser ," "buildup," and "onset" types and their variants. In animals younger than about 10-12 days of age, the driven activity that occurs later than about 50 ms after stimulus onset often is not sustained, but breaks up during the stimulus into bursts that are separated by intervals of about 100-150 ms. Also within the first two weeks of postnatal life, many of the response-area properties of DCN and PVCN neurons are similar to those recorded in adult cats. The excitation and inhibition found within the so-called type II/III, type IV, and type V response areas of the adult occur in this early postnatal period. We conclude that many of the cellular mechanisms that underlie the temporal firing patterns and the organization of the response areas of DCN and PVCN neurons are active in the growing, differentiating cochlear nuclei and that the emergence of these mechanisms does not depend on afferent activity generated in the cochlear and auditory nerve by the animal's acoustic environment. Furthermore, if temporal firing patterns and response-area profiles remain relatively constant over the life span of the animal, then so must the spatial and temporal relationships of the inputs that produce and maintain them as these neurons, and the circuits of which they are a part, grow in size and complexity.  相似文献   

9.
The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4-5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.  相似文献   

10.
Interaction of cortical evoked potentials to electric and acoustic stimuli   总被引:1,自引:0,他引:1  
Evoked potentials to a dichotic stimulus composed of either (1) two binaurally presented tone pips or (2) one tone pip and an electrical pulse to the auditory nerve are recorded from the primary auditory cortex of barbiturate anesthetized cats. The composite stimulus is delivered as a time delayed pair where the interstimulus interval (25 ms) is within the relative refractory period of the evoked potential to either stimulus alone. The amplitude of the cortical potential to the trailing stimulus is compared with its single amplitude as the frequency of the trailing tone pip is changed from 250 Hz through 40 kHz. There is an optimal frequency range over which the trailing stimulus is suppressed and this range appears directly related to the current of a preceding electrical pulse. The frequency of maximum suppression shifts according to the position of the electrode in the nerve. In some experiments secondary maxima develop, suggesting stimulus current spread from fibers of one cochlear turn into fibers from another turn.  相似文献   

11.
A series of experiments evaluated the effects of broadband noise (ipsilateral) on wave V of the brainstem auditory evoked response (BAER) elicited by tone bursts or clicks in the presence of high-pass masking noise. Experiment 1 used 1000- and 4000-Hz, 60-dB nHL tone bursts in the presence of broadband noise. With increasing noise level, wave V latency shift was greater for the 1000-Hz tone bursts, while amplitude decrements were similar for both tone-burst frequencies. Experiment 2 varied high-pass masker cutoff frequency and the level of subtotal masking in the presence of 50-dB nHL clicks. The effects of subtotal masking on wave V (increase in latency and decrease in amplitude) increased with increasing derived-band frequency. Experiment 3 covaried high-pass masker cutoff frequency and subtotal masking level for 1000- and 4000-Hz tone-burst stimuli. The effect of subtotal masking on wave V latency was reduced for both tone-burst frequencies when the response-generating region of the cochlear partition was limited by high-pass maskers. The results of these three experiments suggest that most of the wave V latency shift associated with increasing levels of broadband noise is mediated by a place mechanism when the stimulus is a moderate intensity (60 dB nHL), low-frequency (1000 Hz) tone burst. However, the interpretation of the latency shifts produced by broadband noise for 4000-Hz tone-burst stimuli is made more complex by multiple technical factors discussed herein.  相似文献   

12.
The additivity of forward masking and repetitive stimulation effects on wave V of the brain-stem auditory evoked response (BAER) was investigated. The effects of repetitive stimulation were evaluated for a stimulus train (called the adaptation series), with a 12.5-ms within-train interclick interval. The forward masker was a 100-ms, 80-dB SPL broadband noise with forward-masker intervals ranging from 12.5-87.5 ms. Forward masking and repetitive stimulation increased the latency of wave V of the BAER. The combined forward masking/adaptation series produced less wave V latency shift than the summed individual effects. Forward masking reduced wave V amplitude at brief forward masker intervals, while repetitive stimulation did not affect wave V amplitude. Wave V amplitude was decreased for the combined forward masking/adaptation series, and the time course of amplitude recovery of the combination was prolonged compared to the forward masking alone condition. The nonadditivity of forward masking and rate effects on wave V latency is similar to that found for repetitive stimulation and simultaneous masking [Burkard and Hecox, J. Acoust. Soc. Am. 74, 1204-1213 (1983)]. These findings are consistent with the position that forward masking and rate effects on wave V latency are produced by overlapping mechanisms.  相似文献   

13.

Background  

Previous electrophysiological studies have identified a "voice specific response" (VSR) peaking around 320 ms after stimulus onset, a latency markedly longer than the 70 ms needed to discriminate living from non-living sound sources and the 150 ms to 200 ms needed for the processing of voice paralinguistic qualities. In the present study, we investigated whether an early electrophysiological difference between voice and non-voice stimuli could be observed.  相似文献   

14.
This study investigated, first, the effect of stimulus frequency on mismatch negativity (MMN), N1, and P2 components of the cortical auditory event-related potential (ERP) evoked during passive listening to an oddball sequence. The hypothesis was that these components would show frequency-related changes, reflected in their latency and magnitude. Second, the effect of stimulus complexity on those same ERPs was investigated using words and consonant-vowel tokens (CVs) discriminated on the basis of formant change. Twelve normally hearing listeners were tested with tone bursts in the speech frequency range (400/440, 1,500/1,650, and 3,000/3,300 Hz), words (/baed/ vs /daed/) and CVs (/bae/ vs /dae/). N1 amplitude and latency decreased as frequency increased. P2 amplitude, but not latency, decreased as frequency increased. Frequency-related changes in MMN were similar to those for N1, resulting in a larger MMN area to low frequency contrasts. N1 amplitude and latency for speech sounds were similar to those found for low tones but MMN had a smaller area. Overall, MMN was present in 46%-71% of tests for tone contrasts but for only 25%-32% of speech contrasts. The magnitude of N1 and MMN for tones appear to be closely related, and both reflect the tonotopicity of the auditory cortex.  相似文献   

15.
Tactual temporal-onset order thresholds were measured for two sinusoidal vibrations of different frequencies delivered to two separate locations (thumb and index finger) of a multi-finger tactual stimulating device. The frequency delivered to the thumb was fixed at 50 Hz and that to the index finger at 250 Hz. The amplitude and duration of each of the two sinusoidal vibrations were roved independently from trial to trial in a 1-interval, 2AFC procedure. Performance, measured as a function of stimulus-onset asynchrony (SOA), indicated that the temporal-onset-order threshold averaged 34 ms across four subjects. The data were further classified into subsets according to both the amplitude and duration of the two stimuli in each trial of the roving-discrimination paradigm. The results indicated that the amplitude differences of the two stimuli in each trial had a substantial effect on onset-order discrimination, while duration differences generally had little effect. The effects of amplitude differences are explained qualitatively in terms of amplitude latency relationships and stimulus interactions such as temporal masking. Overall, the results not only contribute to an enhanced understanding of the temporal sensitivity of the tactual system but also provide guidelines for the design of tactual aids for hearing-impaired persons.  相似文献   

16.
Experiments were conducted to assess the contribution of place mechanisms to the effect of rise--fall time on wave V of the human brainstem auditory evoked response (BAER). Noise bursts of 4- and 10-ms duration were presented at various rise-fall times (0, 1, 2, and 5 ms). Subtractive high-pass masking techniques were used to determine the effect of rise time as a function of derived-band frequency. In general, increasing rise time prolonged wave V latency but did not affect amplitude. Rise-time effects did not depend on derived-band frequency and similar effects were seen in the unmasked conditions. In addition, narrowing the derived band did not alter the observed effects on latency and amplitude. Signal envelope showed no effects on traveling wave velocity. These results suggest that place mechanisms contribute little to changes in the BAER associated with rise--fall time.  相似文献   

17.
The cortical mechanisms of perceptual segregation of concurrent sound sources were examined, based on binaural detection of interaural timing differences. Auditory event-related potentials were measured from 11 healthy subjects. Binaural stimuli were created by introducing a dichotic delay of 500-ms duration to a narrow frequency region within a broadband noise, and resulted in a perception of a centrally located noise and a right-lateralized pitch (dichotic pitch). In separate listening conditions, subjects actively discriminated and responded to randomly interleaved binaural and control stimuli, or ignored random stimuli while watching silent cartoons. In a third listening condition subjects ignored stimuli presented in homogenous blocks. For all listening conditions, the dichotic pitch stimulus elicited an object-related negativity (ORN) at a latency of about 150-250 ms after stimulus onset. When subjects were required to actively respond to stimuli, the ORN was followed by a P400 wave with a latency of about 320-420 ms. These results support and extend a two-stage model of auditory scene analysis in which acoustic streams are automatically parsed into component sound sources based on source-relevant cues, followed by a controlled process involving identification and generation of a behavioral response.  相似文献   

18.
There are indications in the literature on speech perception that differences in rise and decay times of the amplitude envelope are relevant physical correlates in phonemic contrasts. Yet, little is known about the perception of rise and decay times as such. In the present study we have attempted to establish JND's for both rise and decay times of 1000-Hz sine waves as well as white noise bursts by means of an adjustment method. The rise and decay of stimulus amplitude were synthesized to be linear functions of time. Results show that the JND for a change in rise/decay time is generally about 25% of the duration of the rise/decay time. This Weber fraction is a minimum at rise/decay times of about 80 ms and increases significantly for rise/decay times below 20 ms. Of the four signal condition noise bursts were performed with the greatest accuracy (at moderate rise/decay times), while changes in onset time of sine waves were discriminated best at very short rise times (where energy splatter may have contributed an additional cue).  相似文献   

19.
20.
ABSTRACT: BACKGROUND: Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. RESULTS: We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. CONCLUSIONS: Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号