首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the blends of polyethylene terephthalate (PET)/ethylene propylene diene rubber (EPDM) in the presence of multi-walled carbon nanotubes (MWCNT) (1 and 3?wt %) were prepared by melt compounding in an internal mixer. Mechanical and morphological properties of the nanocomposites were investigated. The thermal behaviors of the PET/EPDM nanocomposites were also investigated, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of the mechanical tests showed that the tensile strength, elastic modulus and the hardness of the blends were increased with increasing CNT, while the impact strength and elongation at break decreased. The DSC and TGA results showed an increase of melting temperature (Tm) and degradation temperature of the nanocomposites with the addition of the carbon nanotubes, because the carbon nanotubes serve both as nucleating agents to increase Tm and prevent the composite from degradation to increase the thermal stability. The microstructure of the composites was evaluated through field emission scanning electron microscopy (FESEM) and the results showed a good distribution of the MWCNT within the polymer blend.  相似文献   

2.
Mechanical and electrical properties of composites based on butyl rubber and multiwall carbon nanotubes (MWNTs) are investigated. Gradual increases in elastic moduli are observed with the filler content. It was found that the degree of strain affects the electrical resistivity. Finally, the level of reinforcement imparted to a rubbery matrix by carbon nanotubes is compared with that provided by other types of fillers such as carbon black, clay fibers or layered silicates.  相似文献   

3.
Composites of polyamide 66 (PA66)/maleic anhydride grafted poly(ethylene-co-octene) (POE-g-MAH)/nano-calcium carbonate (nano-CaCO3) and PA66/POE-g-MAH/talc were prepared by a one-step blending method. Morphology, crystallization, and mechanical properties of the composite materials were characterized with respect to different amounts of both inorganic fillers, nano-CaCO3 and talc. Results showed that the tensile yield strength and tensile modulus of the composites were increased remarkably with introduction of nano-CaCO3 or talc, but the notched impact strength was significantly lowered for both kinds of composites. Mechanical properties exhibited little difference between the PA66/POE-g-MAH/nano-CaCO3 and PA66/POE-g-MAH/talc composites both for the different shapes and sizes of nano-CaCO3 and the flake-like talc. Results of scanning electron microscopy exhibited agglomeration of the fillers. Differential scanning colorimetry analysis suggested that introduction of the inorganic fillers cause the crystallinity of PA66 to decrease by heterogeneous nucleation. The study provides a basic investigation on polymer/elastomer/rigid filler composites.  相似文献   

4.
In this study, clad layers of iron-based alloy with a nature of self-fluxing were melted on low carbon steel by plasma cladding process. Nanoindentation with atomic force microscopy (AFM) has been used to investigate the mechanical properties of the coating. Hardness and elastic modulus at ultra-low loads were first determined using the method proposed by Giannakopoulos and Suresh (G&S method). The true contact area and mechanical properties were then determined using atomic force microscopy (AFM) combined with the Oliver and Pharr method (new proposed method) as the correction group. The mechanical properties calculated by the two methods showed the same distribution while had deviation in specific values. The effect of surface roughness to the calculated mechanical properties was investigated. Both hardness and elastic modulus were found to exhibit certain surface roughness dependence. When root mean square (RMS) roughness ranged from 2.2 nm to 4.4 nm, hardness calculated by both the methods increased obviously and reached maximums around 4.1 nm. Elastic modulus calculated by G&S method at different RMS showed the same distribution with that of hardness, while reduced elastic modulus obtained by AFM was insensitive to the range of RMS.  相似文献   

5.
Mg-AZ91E/TiCp composite was fabricated using a spontaneous infiltration technique at 950 °C under an argon atmosphere. The composites produced have 37 vol.% of metal matrix and 63 vol.% of TiC-like reinforcement. The obtained composites were subsequently solution heat-treated at 413 °C during 24 h, cold water quenched, and subsequently artificially aged at 168 and 216 °C during 16 h in an argon atmosphere. Effect of heat treatment on the microstructure and mechanical properties was evaluated. Microstructural characterization was analyzed using different techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Interface between matrix and reinforcement was examined using transmission electron microscopy (TEM), and mechanical properties were evaluated by measuring the elastic modulus and hardness. Mg, TiC, Al, and Mg17Al12 phases through XRD were detected. Meanwhile, using TEM analysis in heat-treated composites MgAl2O4, MgO, and Al2O3 were identified. The as-fabricated composite have elastic modulus and hardness of 162 GPa and 316 Hv, respectively. After solution heat treatment and aging at 168 °C during 12 h, the composites reaches values of 178 GPa and 362 Hv for the elastic modulus and hardness, respectively. Time of aging was correlated with measures of elastic modulus and hardness.  相似文献   

6.
《Composite Interfaces》2013,20(1-2):3-24
The addition of particulate fillers (woodflour) and short fibers (sisal) into an unsaturated polyester matrix was performed and analyzed. The efficiency of the filler treatment was carefully investigated, in particular, esterification with two different anhydrides, maleic anhydride (MAN) and an alkenyl succinic anhydride (ASA). The reaction with MAN was performed under different experimental conditions in order to reach different degrees of esterification. The efficiency of the reactions was assessed by FTIR, titrimetric techniques and moisture absorption values. Esterification improves the wettability of the fillers by the resin, so that higher concentrations of filler could be incorporated in the composite. The reaction of the unsaturations of the attached anhydrides with the styrene co-monomer was confirmed by FTIR. This reaction was frequently invoked in the literature, but most times was not confirmed. Scanning electron microscopy study confirmed the improved adhesion of the fillers to the matrix. Surfaces of fractured esterified woodflour composites showed that the resin fills the hollow central regions of the woodflour cells (lumens) reducing capillarity effects during humidity or water sorption by the composites. Mechanical tests were performed on some of the composites to illustrate the effect of the covalent linkages created between the esterified lignocellulosics and the matrix. Tests in which the characteristics of the interphase played an important role were chosen in order to highlight differences resultant of the chemical co-reaction.  相似文献   

7.
A comparative study of the dielectric and mechanical properties of ethylene vinyl acetate copolymer (EVA) filled with various concentrations of pristine and modified carbon nanotubes is reported. The surface of the carbon nanotubes was modified with 4-(2-(cholesteryloxycarboxy)ethyl) phenyl to improve the interaction of the filler with the block copolymer matrix. The improved interaction and the better dispersion of the modified carbon nanotubes (mMWCNTs) were demonstrated by a detailed study of the EVA molecular mobility through dynamic mechanical analysis and broadband dielectric relaxation spectroscopy. The storage modulus of the nanocomposite with 6 wt.% of mMWCNTs at ?50°C was enhanced by 103%, whereas for the nanocomposite with the same amount of unmodified filler, the storage modulus was only enhanced by 76% compared to the pure elastomeric matrix. This difference is more pronounced in the rubbery region in which the storage moduli were increased by 117% and 48% for the composite with the modified and unmodified fillers, respectively. The morphologies of the nanocomposites were studied with scanning and transmission electron microscopies to demonstrate the dispersion of the mMWCNTs within the EVA matrix.  相似文献   

8.
To improve the wear resistance of carbon fabric reinforced polyimide (CF/PI) composite, surface-modified graphene (MG) was synthesized and employed as a filler. The flexural strength, Rockwell hardness and thermal properties of the composites were tested. The composites were also evaluated for their tribological properties in a ring-on-block contact mode under dry sliding conditions. The results showed that the wear rate of MG reinforced CF/PI composites was reduced when compared to unfilled CF/PI composite. It was found that the 1?wt% MG filled CF/PI composites exhibited the optimal tribological properties. The worn surface, wear debris and transfer films were analyzed by scanning electron microscopy (SEM) and optical microscopy (OM) with the results helping to characterize the wear mechanism.  相似文献   

9.
A fully aromatic poly(benzimidazole-imide) (PBI) containing triazole side units and amine-modified multi-wall carbon nanotube (MWCNT)/PBI composites were fabricated via a polymerization process of monomer reactants and solution mixing with ultrasonication excitation. The polymer and composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. According to the microscopic characterizations, the MWCNTs homogeneously dispersed in the composites. The mechanical properties of the composite films were also measured by tensile test. The test results evidently indicated that the Young’s modulus increased by about 60.0% at 1 wt% CNT loading, and further modulus growth was observed at higher filler loading. The composite films hold preferable thermal stability the same as the pure PBI. The improvement of the mechanical and thermal properties was attributed to the incorporation of the surface modified CNTs. For CNT-reinforced polymer composites, strong interfacial adhesion and uniform dispersion of CNTs are more crucial factors for improving such properties.  相似文献   

10.
Lead chloride, bismuth oxide and tungsten oxide filled epoxy composites with different weight fractions were fabricated to investigate their x-ray transmission characteristics in the x-ray diagnostic imaging energy range (40–127 kV) by using a conventional laboratory x-ray machine. Characterizations of the microstructure properties of the synthesized composites were performed using synchrotron radiation diffraction, backscattered electron imaging microscopy, three-point bend test and Rockwell hardness test. As expected, the x-ray transmission was decreased by the increment of the filler loading. Meanwhile, the flexural modulus and hardness of the composites were increased through an increase in filler loading. However, the flexural strength showed a marked decrease with the increment of filler loading (≥30 wt%). Some agglomerations were observed for the composites having ≥50 wt% of filler.  相似文献   

11.
The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.  相似文献   

12.
The mechanical properties of a rare sample of kaolinite macroscopic crystals were evaluated using instrumented indentation. The crystals were also characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy before and after heat treatment at 1100°C. The results are explained in terms of the fracture process occurring in the layered structure of kaolinite, and of the effect of roughness on the hardness and elastic modulus. Data analysis using One-way ANOVA (p?<?0.05) showed that the values of hardness and elastic modulus obtained are statistically homogeneous. Before heat treatment, the sample was composed essentially of kaolinite, with hardness of 42?MPa and elastic modulus equal to 1.3?GPa. After calcination at 1100°C, the sample keeps its layered habit and consists of amorphous metakaolinite. The hardness increases to 360?MPa and the elastic modulus increases to 6.9?GPa.  相似文献   

13.
Amorphous carbon nitride (a-CNx) films with functional gradient Ti-TiN/CNx underlayer were deposited by direct current magnetron sputtering. Microstructure and composition of the films were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, atomic force microscope (AFM) and transmission electron microscopy (TEM). Mechanical and tribological properties were investigated by nanoindenter, scratch and ball-on-disk tribometer. The a-CNx-based films suffer a graphitization process with the increasing deposition temperature, thus the hardness and elastic modulus decrease. With the design of the Ti-TiN/CNx gradient underlayers, some important advantages of relatively thick CNx films can be achieved, such as increased hardness, improved adhesion strength, and the wear resistance of the a-CNx-based films can be also improved significantly.  相似文献   

14.
李红凯  林国强  董闯 《物理学报》2010,59(6):4296-4302
用脉冲偏压电弧离子镀方法在硬质合金基体上制备了一系列不同成分的C-N-V薄膜.用X射线光电子能谱、激光Raman光谱、 X射线衍射(XRD)、透射电子显微镜(TEM)和纳米压痕等方法分别研究了薄膜的成分、结构与性能.Raman光谱,XRD和TEM结果表明,所制备的薄膜为在类金刚石(DLC)非晶基体上匹配有VN晶体的碳基复合薄膜.随V和N含量的增加,薄膜硬度与弹性模量先增加后下降,在N含量为204%,V含量为218%时薄膜硬度与弹性模量具有最大值,分别为368和5697 GPa,高于相同条件下制备的 关键词: C-N-V薄膜 类金刚石薄膜 纳米复合薄膜 电弧离子镀  相似文献   

15.
Abstract

Nanocomposite of waterborne polyurethane (PU) based on poly(hexamethylene carbonate) diol reinforced by organophilic clay was prepared. Exfoliation of silicate layer in PU was confirmed by x-ray diffraction pattern and transmission electron microscopy. Reinforcing effect of clay was examined by observing dynamic mechanical properties, tensile properties, and shore A hardness. The modulus increased as the content of clay in PU matrix was increased, and this increase was more evident when the PU matrix becomes soft at the temperature range above the glass transiton temperature of soft segment. Water swell was decreased and thermal resistance was increased as the content of clay was increased. Reduction of transparency by added clay was marginal.  相似文献   

16.
Superelastic hard carbon particles widely varying in structure and properties have been studied by instrumented microindentation technique. The carbon particles up to 200 μm in size were produced by fullerene collapse upon high-pressure high-temperature treatment of metal–fullerene powder mixture with simultaneous sintering of metal matrix composite materials (CM) reinforced by the particles. The structure and properties of the carbon particles were controlled by changing synthesis parameters and the state (composition and structure) of the parent fullerite crystals. The specific features of the instrumented indentation behaviour of the particles were studied as a function of their hardness. Mechanical properties of the particles tested at loads of up to 1970 mN exhibit an indentation size effect, which becomes more pronounced with increasing hardness of the carbon particles. Upon holding at a constant load, the fullerene-derived carbon particles undergo unrecoverable deformation, and the indentation creep CIT increases with increasing particle hardness. An increase in hardness of the reinforcing carbon particles substantially improves the wear resistance of the CM and decreases their friction coefficient.  相似文献   

17.
为了研究石墨烯/羟基磷灰石复合材料力学性能(弹性模量和泊松比),开发了石墨烯/羟基磷灰石复合材料的随机分布模型自动生成算法及相应的计算程序;建立石墨烯/羟基磷灰石复合材料的有限元模型,计算添加不同质量分数的石墨烯对复合材料力学性能的影响,通过与实验数据对比验证算法的有效性.结果表明:添加0.25%~1.25%(质量分数)的石墨烯可使复合材料的弹性模量增加12%~50%,表明添加少量石墨烯即能有效地改善羟基磷灰石的力学性能.  相似文献   

18.
彭军辉 《计算物理》2020,37(5):603-611
基于第一性原理方法,探索M-Al-N(M=Ti,Zr,Hf)结构的稳定性,计算其力学性质.计算M-Al-N化合物的能量,发现除实验已知的结构Ti2AlN和Ti4AlN3、Zr2AlN、Hf2AlN外,还存在两种新的热力学稳定结构Zr4AlN3、Hf4AlN3.弹性常数和声子谱的计算,表明这两个结构是力学稳定和晶格动力学稳定的.计算M2AlN和M4AlN3的力学性质,发现它们具有高的体模量、剪切模量、弹性模量、维氏硬度等;分析其力学性质随组分比例、组成元素的变化规律,为该类材料的选择和应用提供理论依据.最后计算M2AlN和M4AlN3的电子态密度和分态密度、电子密度分布、Mulliken群分析等.  相似文献   

19.
The effect of three types of silicas with varied loading and the loading of hydroxyl terminated silicone oil on the mechanical and thermal properties of silicone rubbers (SRs) were investigated. Mechanical properties were affected by the silica loading because of the interaction between fillers and polymer and the filler dispersion. Fumed silica filled SRs showed higher tanδ, tensile strength, and elongation at break compared to those containing two types of precipitated silicas. With increasing silicone oil loading, the tensile strength, tear strength, hardness, and tanδ of SRs first increased and then decreased.  相似文献   

20.
Carbon nanotubes as reinforcement of styrene-butadiene rubber   总被引:1,自引:0,他引:1  
This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 °C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号