首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
By one-dimensional particle-in-cell(PIC) simulations, the propagation and stability of relativistic electromagnetic(EM) solitary waves as well as modulational instability of plane EM waves are studied in uniform cold electron-ion plasmas.The investigation not only confirms the solitary wave motion characteristics and modulational instability theory, but more importantly, gives the following findings. For a simulation with the plasma density 1023 m-3 and the dimensionless vector potential amplitude 0.18, it is found that the EM solitary wave can stably propagate when the carrier wave frequency is smaller than 3.83 times of the plasma frequency. While for the carrier wave frequency larger than that, it can excite a very weak Langmuir oscillation, which is an order of magnitude smaller than the transverse electron momentum and may in turn modulate the EM solitary wave and cause the modulational instability, so that the solitary wave begins to deform after a long enough distance propagation. The stable propagation distance before an obvious observation of instability increases(decreases) with the increase of the carrier wave frequency(vector potential amplitude). The study on the plane EM wave shows that a modulational instability may occur and its wavenumber is approximately equal to the modulational wavenumber by Langmuir oscillation and is independent of the carrier wave frequency and the vector potential amplitude.This reveals the role of the Langmuir oscillation excitation in the inducement of modulational instability and also proves the modulational instability of EM solitary wave.  相似文献   

2.
A long wavelength Langmuir wave (ω0, k0), propagating through a parabolic plasma density channel, can decay into a low-frequency mode (ω,k&oarr;) and two short wavelength Langmuir wave sidebands (ν1,2,k&oarr;1,2 ), via two-stream instability where ω1,2=ω∓ω0 and k&oarr;1,2=k&oarr;∓k&oarr;0. Depending on the mode number n, the growth rate maximizes in the range γmax≃0.1ωpi-0.4ωpi for the range of k from 0.1(ωpi/cs) to 0.2(ωpi/cx) for ν0th where ν0 and νth are the oscillatory and thermal velocities of electrons, ωpi is the ion plasma frequency on the axis, and cs is the sound speed. The growth rate increases with the width a of the plasma density channel. It decreases with the mode number. The instability may be relevant to laser based charged particle accelerators  相似文献   

3.
In the paper we present the results of an investigation of a low frequency (30-100 kHz) instability in a weakly magnetized discharge plasma. The instability is triggered by a disc electrode which terminates the magnetized plasma column and is biased above the plasma potential. Frequency dependence on various parameters, e.g. electrode diameter, electrode bias, neutral gas pressure and plasma density is measured. Space and time dependence of the plasma potential and density in the perturbed region during one period of the electrode current oscillation are measured. During the phase of the current decrease a potential structure moves in axial direction from the edge of the perturbed region towards the electrode. During the phase of current saturation the motion of ions is mostly radial. The observed phenomenon is approximately modeled as a two dimensional potential relaxation instability (PRI).  相似文献   

4.
The instability of plasma waves is influenced by many factors, such as quantum effects and electrical thermal motion. However, in sufficiently small electronic devices, viscous electron flows can be generated from the electronic interactions and govern electronic transport. The strong influence of the viscous electron fluid on plasma wave instability in field effect transistors(FET) was analyzed in this study. The theoretical results show that the instability increment and radiation frequency are functions of the Mach number, and the instability increment. Further, the computer simulative data show that the radiation frequencies increase within a certain range and the instability increment decreases owing to the presence of viscous electron flows. Therefore, it can be concluded that the viscous electron flow FETs exerts considerable influence on the characteristics of the terahertz wave.  相似文献   

5.
We consider the intensity fluctuation patterns produced beyond a deeply modulated phase changing screen when two plane waves, each with a different frequency, are incident on the same screen. The spatial frequency spectrum corresponding to the cross-correlation between these two different intensity fluctuation patterns is derived. This spectrum has two distinct regions, one of low spatial frequencies which is independent of the incident wave frequencies, and another at high spatial frequencies which is wave frequency dependent. As the difference between the incident wave frequencies increases the upper cut-off spatial frequency of the spectrum decreases. The corresponding cross-scintillation index is also considered and it is shown that this is independent of the incident wave frequencies close to the phase screen and including the focal region where there is a peak in the index. In the far field the scintillation index approaches unity as the distance from the screen increases in the monochromatic case. However, for different incident wave frequencies the far-field scintillation index falls off both with distance from screen and with increasing wave frequency difference.  相似文献   

6.
本文详述了HL-1托卡马克等离子体低混杂波驱动(LHCD)和电子回旋波加热(ECRH)条件下不同特征频率上的微波非热辐射。欧姆放电下,分析了由速度各向异性(νⅡ>>ν┴)引起的反常多普勒不稳定性,实验观察了在LHCD和ECRH条件下这种不稳定性的行为。运用反常用普勒不稳定性产生条件,本文讨论了LHCD条件下这种不稳定性受到抑制的可能物理机制。  相似文献   

7.
《Current Applied Physics》2020,20(8):961-966
In this paper, a plasma photonic crystal (PPC) for infrared radiation modulation which is composed of indium tin oxide (ITO) and plasma is proposed. The performance of plasma photonic crystal in near infrared radiation modulation is researched by transfer matrix method (TMM). The simulation results show that the near infrared radiation pass band can be adjusted by the changing of plasma frequency of plasma. The reflection to near infrared radiation by plasma photonic crystal increases with plasma frequency and that of absorption decreases. In addition, the modulation performance of the plasma photonic crystal at different incidence wave angles is also studied. The results show that the incident wave angles have little effect on the transmission of plasma photonic crystal in near infrared band. The reflection of the plasma photonic crystal to near infrared radiation decreases with increasing of the incident wave angle, but that of the absorption increases with the incident wave angle. Therefore, the proposed plasma photonic crystal has a potential application in tunable near infrared filter devices.  相似文献   

8.
We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr--Purcell--Meiboom--Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin--spin relaxation even in the presence of magnetic field temporal instability.  相似文献   

9.
Experimental results are presented on the nonlinear effects related to the simultaneous excitation of three low‐frequency instabilities in the magnetized plasma column of a Q‐machine, namely the potential relaxation instability, the electrostatic ion‐cyclotron instability and the Kelvin‐Helmholtz instability. The influence of electron drift and magnetic field intensity on appearance, dynamics and mutual interaction of these instabilities was investigated (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
An instability is triggered in a weakly magnetized discharge plasma by the application of a positive voltage step to a planar collector immersed into the plasma column with its surface perpendicular to the magnetic field lines. Time developement of the plasma density after the application of the pulse is measured by a Langmuir probe. Radial and axial velocity of the plasma density perturbation are measured. Radial velocity is consistent with the increase of the plasma potential in the current channel. Axial velocity is very high. It is interpreted as phase velocity of radial quasiperiodic motion of the plasma in and out of the current channel. Response time of the collector current to the applied voltage step is measured versus different parameters. Experimental results are in agreement with a qualitative model presented in previous work [1] where the observed instability is modeled as a two dimensional potential relaxation instability (PRI). Minor improvements of the previous model are proposed. A rarefaction pulse that moves towards the collector is found as the initial stage of the instability.  相似文献   

11.
《Physics letters. A》2003,280(2-3):226-233
The modulational instability of dust acoustic waves in a dusty plasma with non-adiabatic dust charge fluctuation is studied. Using the perturbation method, a modified nonlinear Schrödinger equation containing a damping term that comes from the effect of dust charge variation is derived. It is found that the modulational instability of the wave packet and the propagation characters of the envelope solitary waves are modified significantly by the non-adiabatic dust charge fluctuation.  相似文献   

12.
刘少斌  张光甫  袁乃昌 《物理学报》2004,53(8):2633-2637
采用分段线性电流密度递归卷积时域有限差分(PLJERC-FDTD)算法计算了均匀非磁化等离子体覆盖三维立方体目标的散射特性.分析了等离子体厚度、密度和碰撞频率对雷达散射截面(RCS)的影响.计算结果表明:等离子体包层能有效地减小雷达目标的RCS,当等离子体频率比入射电磁波频率小得多时,主要靠增大等离子体的厚度使立方散射体目标的RCS值减小,增大等离子体碰撞频率对立方散射体目标的RCS值影响不大;当等离子体频率约为入射电磁波频率的一半时,增大等离子体厚度和碰撞频率都对立方散射体目标的RCS值减小有影响;当等 关键词: FDTD算法 电磁波 等离子体隐身 雷达散射截面  相似文献   

13.
The resonant parametric decay of a Langmuir wave into a backward propagating Langmuir wave and an ion acoustic (IA) wave is studied in a cylindrical dusty plasma. The analysis shows that the frequency of the IA mode decreases with the parameter δc (where δc is the ratio of the ion density to the electron density) for negatively charged dust grains. The growth rate of the resonance decay instability (RDI) and the threshold required for its onset also decrease with δc and are strongly dependent on the electron to ion temperature ratio for both positively and negatively charged dust grains. The results obtained also illustrate the dependence of the threshold of the resonance decay instability (μth) on the plasma cylinder radius.  相似文献   

14.
B P Pandey  C B Dwivedi 《Pramana》1995,45(3):255-260
We study the effect of the mass and charge dynamics on the collective behaviour of a dusty plasma. It is shown that the finite non-zero streaming velocity of the dust grains leads to a novel coupling of the dust mass fluctuation with other dynamic variables of the plasma and the grains. The mass fluctuations causes a collisionless dissipation and provides an alternate channel for the beam mode instability to occur. Physically the negative energy wave associated with the beam mode couples to the mass fluctuation induced dissipative medium to produce the instability. We conclude that the higher value of the ion mass density to the dust mass density ratio reduces the threshold value for the onset of the instability. Its application in the astrophysical context is discussed.  相似文献   

15.
The effect of negative ions on the drift wave instability has been studied in detail in a linear device by means of Langmuir probes and cross‐correlation analysis. Drift waves are excited in low‐density (5 × 1014 m–3) and strongly magnetized (0.5 T) pure argon plasmas and in the presence of an oxygen admixture. The radial density profile of negative ions is hollow. For increasing concentration of negative ions the wave frequency decreases by about 25%. Despite of an axial density gradient, a global wave frequency is established for the entire column length. While for the noble gas case the drift wave frequency is given by the equilibrium plasma parameters in the mid‐plane, there is no such relationship for the argon plasma with oxygen admixture. This different finding is attributed to the inhomogeneous distribution of the negative ions (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Lower hybrid (LH) wave instability excited due to an electron beam in a spin‐polarized degenerate plasma is studied. Using the Separate Spin Evolution quantum hydrodynamic model, incorporating Coulomb exchange interaction and Bohm potential, the general dispersion relation of nearly perpendicular propagating electrostatic waves is derived. Furthermore, in the low‐frequency limit, the dispersion of LH wave is obtained. It is found that the electron spin polarization and beam streaming speed reduce the growth rate as well as the k‐domain. However, the beam density and the propagation angle enhance both the growth rate and k‐domain of LH instability. In addition, the contribution of the Bohm potential term increases the intensity of the growth rate. All these effects may have a strong bearing on the wave and instability phenomena in spin‐polarized plasmas.  相似文献   

17.
在高超声速静音风洞内, 通过基于纳米粒子示踪的平面激光散射(nano-tracer-based planar laser scattering, NPLS)技术、高频压力传感器和温敏漆(temperature sensitive paints, TSP)技术开展了0°攻角条件下7°直圆锥高超声速边界层转捩相关实验研究, 得到了圆锥边界层由层流发展至湍流完整过程的NPLS图像, 清晰地展示了第2模态波的"绳状"结构, 尖锥与钝锥边界层的NPLS结果表明尖锥边界层转捩中第2模态波占主导, 而钝锥边界层在转捩前出现波长约为第2模态波波长5倍(甚至更长)、特征频率不高于31 kHz的狭长涡结构; 采用功率谱密度(power spectrum density, PSD)分析、互相关和N值计算对高频脉动压力数据进行分析, 得到了边界层内扰动波的发展规律, 在尖锥和钝锥中均观察到了沿流向第2模态波幅值先增大后减小、特征频率逐渐降低, 低频成分逐渐增加, 表明边界层发展过程中第2模态率先发展达到饱和, 而后逐渐衰减, 而低频模态则逐渐发展; 通过TSP技术得到了不同单位Reynolds数下的圆锥表面温升分布, 结果表明, 随单位Reynolds数增大, 边界层转捩阵面前移.   相似文献   

18.
Multidimensional instability of dust‐acoustic solitary wave (DASW) in magnetized dusty plasma with superthermal electrons and ions and micron size hot dust particles is investigated. The Zakharov‐Kuznetsov (ZK) equation, describing the small but finite amplitude DASW, was derived using the reductive perturbation method and its solitary answers was introduced. Effects of electrons and ions superthermality as well as the external magnetic field on the nature of DASW are discussed in detail. Dispersion relation, threshold condition, and growth rate of multidimensional instability of DASW were derived using small‐k (long wavelength plane wave) perturbation expansion method. We found that the direction and strength of external magnetic field extremely affect the growth rate and instability criterion. Results show that growth rate of instability decreases with increasing the number of superthermal electrons and increases with increasing the number of superthermal ions. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
《中国物理 B》2021,30(9):95203-095203
A one-dimensional self-consistent calculation model of capacitively coupled plasma(CCP) discharge and electromagnetic wave propagation is developed to solve the plasma characteristics and electromagnetic wave transmission attenuation.Numerical simulation results show that the peak electron number density of argon is about 12 times higher than that of helium, and that the electron number density increases with the augment of pressure, radio frequency(RF) power, and RF frequency. However, the electron number density first increases and then decreases as the discharge gap increases. The transmission attenuation of electromagnetic wave in argon discharge plasma is 8.5-d B higher than that of helium. At the same time, the transmission attenuation increases with the augment of the RF power and RF frequency, but it does not increase or decrease monotonically with the increase of gas pressure and discharge gap. The electromagnetic wave absorption frequency band of the argon discharge plasma under the optimal parameters in this paper can reach the Ku band. It is concluded that the argon CCP discharge under the optimal discharge parameters has great potential applications in plasma stealth.  相似文献   

20.
陈伟  郭立新  李江挺  淡荔 《物理学报》2017,66(8):84102-084102
高超声速飞行器再入地面的过程中,其周围等离子体的电子密度是非均匀且随时间变化的.对于不同的再入高度,飞行器周围的温度和压强也会发生改变.因此,研究电磁波在时空非均匀等离子体鞘套中的传播特性意义重大.首先建立了时变非均匀的等离子体鞘套模型,然后通过经验公式得到温度、压强与碰撞频率三者的关系.采用时域有限差分方法计算了太赫兹波段中不同电子密度弛豫时间、温度、压强时的反射系数、透射系数和吸收率.研究结果表明:在太赫兹波段中,电子密度的弛豫时间越长,温度越高,压强越大,电磁波越容易穿透等离子体;弛豫时间越短,温度越低,压强越小,等离子体对电磁波吸收率的变化越明显.这些结果为解决"黑障"问题提供了理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号