首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic reaction center (RC) found in photosynthetic bacteria is one of the most advanced photoelectronic devices developed by nature. However, after immobilization on the electrode surface, the efficiency of electron transfer (ET) between the RC and the electrode is relatively low. This inefficiency has limited the possibility of using the RC for technological applications. Here we show that photoinduced electron transfer between the immobilized RC and a gold electrode can be increased by several tens-fold by incorporation of cytochrome c into the RC-self-assembled monolayer (SAM)-electrode complex. The effect does not depend on the initial redox state of the cytochrome and seems to be the result of the formation of a complex between the RC and the cytochrome c serving as an ET wire. This observation opens the possibility for electrochemical analysis of the special pair in the RC protein that is deeply buried inside the protein globe and is barely electrically addressable from the electrode surface.  相似文献   

2.
The structure and function of naturally occurring proteins are governed by a large number of amino acids (≥100). The design of miniature proteins with desired structures and functions not only substantiates our knowledge about proteins but can also contribute to the development of novel applications. Excellent progress has been made towards the design of helical proteins with diverse functions. However, the development of functional β-sheet proteins remains challenging. Herein, we describe the construction and characterization of four-stranded β-sheet miniproteins made up of about 19 amino acids that bind heme inside a hydrophobic binding pocket or “heme cage” by bis-histidine coordination in an aqueous environment. The designed miniproteins bound to heme with high affinity comparable to that of native heme proteins. Atomic-resolution structures confirmed the presence of a four-stranded β-sheet fold. The heme–protein complexes also exhibited high stability against thermal and chaotrope-induced unfolding.  相似文献   

3.
4-Aminothiophenol (4-ATP) self-assembled monolayer (SAM) was immobilized on gold electrode. The multi-layered protein film electrode was prepared to rinse the 4-ATP-Au electrode in poly-styrenesulfonate (PSS) and poly-dimerthyldiallylammonium chloride (PDDA) successively, then soaked in a solution containing photosynthetic reaction center (RC) protein from Rhodobacter sphaeriodes or its pigment-replaced mutant. Thus, RC was found embedded in an ordered-orientation film. In cyclic voltammetry (CV) and square wave voltammetry (SWV), Au electrode gave a series of electrochemical signals due to the redox reaction of RC protein or its mutants. Intermolecular direct electron transfer (ET) was studied in this work.  相似文献   

4.
Bacterial photosynthetic membrane proteins, light-harvesting antenna complex (LH1), reaction center (RC), and their combined ‘core’ complex (LH1–RC) are functional elements in the primary photosynthetic events, i.e., capturing and transferring light energy and subsequent charge separation. These photosynthetic units (PSUs) isolated from Rhodospirillum rubrum (Rs. rubrum) were assembled onto an ITO electrode modified with 3-aminopropyltriethoxysilane (APS–ITO). The near IR absorption spectra of PSUs on the assembled electrodes were identical to those of solutions, indicating that the LH1 and LH1–RC core complexes were native on the electrode. Photocurrent response of PSUs on the electrode was examined upon illumination of the LH1 complex at 880 nm. The LH1–RC and a mixed assembly of LH1 and RC exhibited photocurrent response, but not LH1 only, consistent with the function of these PSUs, capturing light energy and transferring electron. This result provides useful methodology for building an artificial fabrication of PSUs on the electrode.  相似文献   

5.
An ultrathin, ordered, and packed protein film, consisting of the 2-mercaptoacetic acid (MAA), polydimethyldiallylammonium chloride (PDDA), and wild-type (WT) photosynthetic reaction center (RC; termed as WT-RC) or its pheophytin (Phe)-replaced counterpart (termed as Phe-RC), was fabricated by self-assembling technique onto gold electrode for facilitating the electron transfer (ET) between RC and the electrode surface. Near-infrared (NIR)-visible (Vis) absorption and fluorescence (FL) emission spectra revealed the influence of pigment substitution on the cofactors arrangement and excitation relaxation of the proteins, respectively. Square wave voltammetry (SWV) and photoelectric tests were employed to systematically address the differences between the WT-RC films and mutant ones on the direct and photo-induced ET. The electrochemical results demonstrated that ET initiated by the oxidation of the primary donor (P) was obviously slowed down, and the formed P+ had more population as well as more positive redox potential in the Phe-RC films compared with those in the WT ones. The photoelectrochemical results displayed the dramatically enhanced photoelectric performances of the mutant ones, further suggesting the slow-down formation of final charge-separated state in Phe-RC. The functionalized protein films introduced in this paper provided an efficient approach to sensitively probe the redox cofactors and ET differences resulting from only minor changes in pigment arrangement in the pigment–protein complex. The favored ET process observed for the membrane proteins RC was potentially valuable for a deep understanding of the multi-step biological ET process and development of versatile bioelectronic devices.  相似文献   

6.
Direct reversible electron transfer for photosynthetic reaction center from wild type Rhodobacter sphaeroides re-constituted in polycation sandwiched monolayer film was observed in this work. The redox potential E0' = 0.46 V vs. NHE for first primary donor redox couple P/P+ was accurately measured from reversible CV or SWV peaks, which were quite close to those obtained from optic redox titration method. Reaction center (RC) in film was found re-constituted in such an ordered way that the orientation of RC favored the electron transfer in film. Thus, the protein electroactivity seems to be turned on in this artificial biomimic thin film. Furthermore, RC in the film features a photo-induced redox-peak fluctuation, suggesting an intact and functional state for RC in such film. Redox peaks were also found dependent of pH, implying a proton-coupled electron transfer occurring in film. Charge recombination was observed accompanied with change of electrochemical driving force. Electrochemical model assuming several classes of electroactive sites in the films on the electrode with a dispersion of standard potentials successfully fits SWV experimental data at different pulse height and frequency.  相似文献   

7.
On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme configuration. The proteins possess different binding domains on the top surfaces of the bundles to allow for electrostatic, covalent, and hydrophobic binding to metal electrodes. Electrostatic immobilization was achieved for proteins with lysine-rich binding domains (MOP-P) that adsorb to electrodes covered by self-assembled monolayers of mercaptopropionic acid, whereas cysteamine-based monolayers were employed for covalent attachment of proteins with cysteine residues in the binding domain (MOP-C). Immobilized proteins were studied by surface-enhanced resonance Raman (SERR) spectroscopy and electrochemical methods. For all proteins, immobilization causes a decrease in protein stability and a loosening of the helix packing, as reflected by a partial dissociation of a histidine ligand in the ferrous state and very low redox potentials. For the covalently attached MOP-C, the overall interfacial redox process involves the coupling of electron transfer and heme ligand dissociation, which was analyzed by time-resolved SERR spectroscopy. Electron transfer was found to be significantly slower for the mono-histidine-coordinated than for the bis-histidine-coordinated heme. For the latter, the formal heterogeneous electron-transfer rate constant of 13 s(-1) is similar to those reported for natural heme proteins with comparable electron-transfer distances, which indicates that covalently bound synthetic heme proteins provide efficient electronic communication with a metal electrode as a prerequisite for potential biotechnological applications.  相似文献   

8.
Microperoxidase-11 has been immobilized on siliceous materials MCM-41 and SBA-15 and on amino-functionalized SBA-15. Resonance Raman spectroscopy has provided solid evidence that the exogenous species occupy the pores of the mesoporous silica materials. Photoreduction of the microperoxidase-11 Fe(III) center has been observed to occur in the immobilized samples and results in a long-lived stable reduced heme. Reoxidation of the heme occurs upon addition of oxygen, and the redox cycle can be repeated numerous times. The source of the electron resulting in reduction of the heme is proposed to originate from the silica matrix, and functionalization of silica surface is suggested to facilitate electron transfer to the heme.  相似文献   

9.
The introduction of a flavin chromophore on the myoglobin (Mb) surface and an effective electron-transfer (ET) reaction through the flavin were successfully achieved by utilizing the self-assembly of heterostranded coiled-coil peptides. We have prepared a semiartificial Mb, named Mb-1alphaK, in which an amphiphilic and cationic alpha-helix peptide is conjugated at the heme propionate (Heme-1alphaK). Heme-1alphaK has a covalently bound iron-protoporphyrin IX (heme) at the N terminus of a 1alphaK peptide sequence. This sequence was designed to form a heterostranded coiled-coil in the presence of a counterpart amphiphilic and anionic 1alphaE peptide sequence in a parallel orientation. Two peptides, Fla(1)-1alphaE and Fla(31)-1alphaE, both incorporating a 10-methylisoalloxazine moiety as an artificial flavin molecule, were also prepared (Fla=2-[7-(10-methyl)isoalloxazinyl]-2-oxoethyl). Heme-1alphaK was successfully inserted into apomyoglobin to give Mb-1alphaK. Mb-1alphaK recognized the flavin-modified peptides and a two-alpha-helix structure was formed. In addition, an efficient ET from reduced nicotinamide adenine dinucleotide to the heme center through the flavin unit was observed. The ET rate was faster in the presence of Fla(1)-1alphaE than in the presence of Fla(31)-1alphaE or the equivalent molecule that has no peptide chain. These results demonstrate that the introduction of a functional chromophore on the Mb surface can be achieved by using specific peptide-peptide interactions. Moreover, the dependence of the ET rate on the position of the flavin indicated that the distance between the heme active site and the flavin chromophore was regulated by the three-dimensional structure of the designed polypeptide.  相似文献   

10.
The acceleration of electron transfer (ET) rates in redox proteins relative to aqueous solutes can be attributed to the protein's ability to reduce the nuclear response or reorganization upon ET, while maintaining sufficiently high electronic coupling. Quantitative predictions of reorganization free energy remain a challenge, both experimentally and computationally. Using density functional calculations and molecular dynamics simulation with an electronically polarizable force field, we report reorganization free energies for intraprotein ET in four heme-containing ET proteins that differ in their protein fold, hydrophilicity, and solvent accessibility of the electron-accepting group. The reorganization free energies for ET from the heme cofactors of cytochrome c and b(5) to solvent exposed Ru-complexes docked to histidine residues at the surface of these proteins fall within a narrow range of 1.2-1.3 eV. Reorganization free energy is significantly lowered in a designed 4-helix bundle protein where both redox active cofactors are protected from the solvent. For all ET reactions investigated, the major components of reorganization are the solvent and the protein, with the solvent contributing close to or more than 50% of the total. In three out of four proteins, the protein reorganization free energy can be viewed as a collective effect including many residues, each of which contributing a small fraction. These results have important implications for the design of artificial electron transport proteins. They suggest that reorganization free energy may in general not be effectively controlled by single point mutations, but to a large extent by the degree of solvent exposure of the ionizable cofactors.  相似文献   

11.
The di-heme protein Pseudomonas stutzeri cytochrome c(4) (cyt c(4)) has emerged as a useful model for studying long-range protein electron transfer (ET). Recent experimental observations have shown a dramatically different pattern of intramolecular ET between the two heme groups in different local environments. Intramolecular ET in homogeneous solution is too slow (>10 s) to be detected but fast (ms-μs) intramolecular ET in an electrochemical environment has recently been achieved by controlling the molecular orientation of the protein assembled on a gold electrode surface. In this work we have performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial ligands in both low- and high-spin states by structure-optimized DFT. The computations enable estimating the intramolecular reorganization energy of the ET process for different combinations of low- and high-spin heme couples. Environmental reorganization free energies, work terms ("gating") and driving force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe-Fe separations. The reactivity of low- and high-spin heme groups was notably different. The ET rate is exceedingly low for the crystallographic equilibrium orientation but increases by several orders of magnitude for thermally accessible non-equilibrium configurations. Deprotonation of the propionate carboxyl group was also found to enhance the ET rate significantly. The results are discussed in relation to the observed surface immobilization effect and support the notion of conformationally gated ET.  相似文献   

12.
De novo design of artificial proteins is an essential approach to elucidate the principles of protein architecture and to understand specific functions of natural proteins and also to yield novel molecules for medical and industrial aims. We have designed artificial sequences of 153 amino acids to fit the main-chain framework of the sperm whale myoglobin structure based on the knowledge-based energy functions to evaluate the compatibility between protein tertiary structures and amino acid sequences. The synthesized artificial globins bind a single heme per protein molecule as designed, which show well-defined electrochemical and spectroscopic features characteristic of proteins with a low-spin heme. Redox and ligand binding reactions of the artificial heme proteins were investigated and these heme-related functions were found to vary with their structural uniqueness. Relationships between the structural and functional properties are discussed.  相似文献   

13.
A new perspective of electron transfer chemistry is described for fine control of electron transfer reactions including back electron transfer in the charge separated state of artificial photosynthetic compounds and its synthetic application. Fundamental electron transfer properties of suitable components of efficient electron transfer systems are described in light of the Marcus theory of electron transfer, in particular focusing on the Marcus inverted region, and they are applied to design multi-step electron transfer systems which can well mimic the function of a photosynthetic reaction center. Both intermolecular and intramolecular electron transfer processes are finely controlled by complexation of radical anions, produced in the electron transfer, with metal ions which act as Lewis acids. Quantitative measures to determine the Lewis acidity of a variety of metal ions are given in relation to the promoting effects of metal ions on the electron transfer reactions. The mechanistic viability of metal ion catalysis in electron transfer reactions is demonstrated by a variety of examples of chemical transformations involving metal ion-promoted electron transfer processes as the rate-determining steps, which are made possible by complexation of radical anions with metal ions.  相似文献   

14.
The specific objective of this review is to describe recent development of bioinspired artificial photosynthetic systems and their applications. First, multi-step electron-transfer systems composed of electron donor-acceptor ensembles are presented, mimicking functions of the photosynthetic reaction center. However, a significant amount of energy is lost during the multi-step electron-transfer processes. Then, as an alternative to conventional charge-separation functional molecular models based on multi-step long-range electron transfer within redox cascades, simple electron donor-acceptor dyads linked by covalent or non-covalent bonding have been developed to attain a long-lived and high-energy charge-separated state without significant loss of excitation energy. Such simple molecular dyads, capable of fast charge separation but extremely slow charge recombination, have significant advantages with regard to synthetic feasibility, providing a variety of applications including construction of organic solar cells and development of efficient photocatalytic systems for the solar energy conversion.  相似文献   

15.
Function of the Reaction Center of Green Sulfur Bacteria   总被引:1,自引:0,他引:1  
The reaction center (RC) of green sulfur bacteria belongs to the Fe-S type RC, as do the photosystem I of oxygenic photosynthetic organisms and the RC of heliobacteria. The core parts of the green sulfur bacterial and the heliobacterial RC are assumed to be homodimeric, in contrast to those of purple bacteria, photosystem I and photosystem II. This paper describes recent advances in the study of the function of the green sulfur bacterial RC.  相似文献   

16.
Fullerenes have been used successfully in the covalent assembly of supramolecular systems that mimic some of the electron transfer steps of photosynthetic reaction centers. In these constructs C60 is most often used as the primary electron acceptor; it is linked to cyclic tetrapyrroles or other chromophores which act as primary electron donors in photoinduced electron transfer processes. In artificial photosynthetic systems, fullerenes exhibit several differences from the superficially more biomimetic quinone electron acceptors. The lifetime of the initial charge-separated state in fullerene-based molecules is, in general, considerably longer than in comparable systems containing quinones. Moreover, photoinduced electron transfer processes take place in non-polar solvents and at low temperature in frozen glasses in a number of fullerene-based dyads and triads. These features are unusual in photosynthetic model systems that employ electron acceptors such as quinones, and are more reminiscent of electron transfer in natural reaction centers. This behavior can be attributed to a reduced sensitivity of the fullerene radical anion to solvent charge stabilization effects and small internal and solvent reorganization energies for electron transfer in the fullerene systems, relative to quinone-based systems.  相似文献   

17.
A water-soluble octacarboxyhemicarcerand was used as a shuttle to transport redox-active substrates across the aqueous medium and deliver them to the target protein. The results show that weak multivalent interactions and conformational flexibility can be exploited to reversibly bind complex supramolecular assemblies to biological molecules. Hydrophobic electron donors and acceptors were encapsulated within the hemicarcerand, and photoinduced electron transfer (ET) between the Zn-substituted cytochrome c (MW = 12.3 kD) and the host-guest complexes (MW = 2.2 kD) was used to probe the association between the negatively charged hemicarceplex and the positively charged protein. The behavior of the resulting ternary protein-hemicarcerand-guest assembly was investigated in two binding limits: (1) when K(encaps) ? K(assoc), the hemicarcerand transports the ligand to the protein while protecting it from the aqueous medium; and (2) when K(assoc) > K(encaps), the hemicarcerand-protein complex is formed first, and the hemicarcerand acts as an artificial receptor site that intercepts ligands from solution and positions them close to the active site of the metalloenzyme. In both cases, ET mediated by the protein-bound hemicarcerand is much faster than that due to diffusional encounters with the respective free donor or acceptor in solution. The measured ET rates suggest that the dominant binding region of the host-guest complex on the surface of the protein is consistent with the docking area of the native redox partner of cytochrome c. The strong association with the protein is attributed to the flexible conformation and adaptable charge distribution of the hemicarcerand, which allow for surface-matching with the cytochrome.  相似文献   

18.
The review briefly outlines theoretical models developed in 1990s to describe electron transfer reactions (ETR) in proteins, as well as different variants of improvements in these models proposed by the present authors to describe ETR in reaction centers (RC) of photosynthetic bacteria with consideration of their molecular dynamics in a wide temperature range. Experimental data on electron transfer from reduced proximal heme c-559 of cytochrome to bacteriochlorophyll dimer radical cation P+ in RC from two types of bacteria, viz., native and mutant RC from Rps. viridis and native RC from Rps. sulfoviridis were analyzed within the framework of the models which take into account the quantum and classical (including diffusive) degrees of freedom responsible for reorganization of the protein globule.  相似文献   

19.
Photosynthetic reaction centers convert excitation energy from absorbed sunlight into chemical potential energy in the form of a charge-separated state. The rates of the electron transfer reactions necessary to achieve long-lived, high-energy charge-separated states with high quantum yields are determined in part by precise control of the electronic coupling among the chromophores, donors, and acceptors and of the reaction energetics. Successful artificial photosynthetic reaction centers for solar energy conversion have similar requirements. Control of electronic coupling in particular necessitates chemical linkages between active component moieties that both mediate coupling and restrict conformational mobility so that only spatial arrangements that promote favorable coupling are populated. Toward this end, we report the synthesis, structure, and photochemical properties of an artificial reaction center containing two porphyrin electron donor moieties and a fullerene electron acceptor in a macrocyclic arrangement involving a ring of 42 atoms. The two porphyrins are closely spaced, in an arrangement reminiscent of that of the special pair in bacterial reaction centers. The molecule is produced by an unusual cyclization reaction that yields mainly a product with C(2) symmetry and trans-2 disubstitution at the fullerene. The macrocycle maintains a rigid, highly constrained structure that was determined by UV-vis spectroscopy, NMR, mass spectrometry, and molecular modeling at the semiempirical PM6 and DFT (B3LYP/6-31G**) levels. Transient absorption results for the macrocycle in 2-methyltetrahydrofuran reveal photoinduced electron transfer from the porphyrin first excited singlet state to the fullerene to form a P(?+)-C(60)(?-)-P charge separated state with a time constant of 1.1 ps. Photoinduced electron transfer to the fullerene excited singlet state to form the same charge-separated state has a time constant of 15 ps. The charge-separated state is formed with a quantum yield of essentially unity and has a lifetime of 2.7 ns. The ultrafast charge separation coupled with charge recombination that is over 2000 times slower is consistent with a very rigid molecular structure having a small reorganization energy for electron transfer, relative to related porphyrin-fullerene molecules.  相似文献   

20.
Rational protein design is a powerful strategy, not only for revealing the structure and function relationship of natural metallo-proteins, but also for creating artificial metalloproteins with improved properties and functions. Myoglobin (Mb), a small heme protein created by nature with diverse functions, has been shown to be an ideal scaffold for rational protein design. The progress reviewed herein includes fine-tuning its native functions of O2 binding and transport, peroxidase activity and nitrite reductase (NIR) activity, and rational expanding its functionalities to peroxygenase, heme-copper oxidase (HCO), nitric oxide reductase (NOR), as well as hydroxylamine reductase. These studies have enhanced our understanding of how metalloproteins work in nature, and provided insights for rational design of functional metalloproteins for practical applications in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号