首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The MM4 force field has been extended to include aliphatic amines. About 20 amines have been examined to obtain a set of useful molecular mechanics parameters for this class. The vibrational spectra of seven amines (172 frequencies) calculated by MM4 have an overall rms error of 27 cm(-1), compared with corresponding MM4 value of 24 cm(-1) for alkanes. The rms and signed average errors of the moments of inertia of nine simple amines compared with the experimental data were 0.18% and -0.004%, respectively. The heats of formation of 30 amines were also studied. The MM4 weighted standard deviation is 0.41 kcal/mol, compared with experiment. Electronegativity effects occur in the hydrocarbon portion of an amine from the nitrogen, and are accounted for by including electronegativity induced changes in bond lengths and angles, and induced dipole-dipole interactions in the molecule. Negative hyperconjugation results from the presence of the lone pair of electrons on nitrogen, and leads to the Bohlmann bands in the infrared, and also to strong and unusual geometric changes in the molecules (Bohlmann effect), all of which are fairly well accounted for. The conformational energies in amines appear to be less straightforward than those for most other classes of molecules, apparently because of the Bohlmann effect, and these are probably not yet completely understood. In general, the agreement between the MM4 calculated results and the available data is reasonably good.  相似文献   

2.
The physical properties of a diverse group of 12 oxocarbenium ions have been studied with ab initio calculations at the MP2/6‐31+G* level of theory. Based on theoretically derived properties such as molecular equilibrium geometry, dipole moment, and vibrational frequencies, a molecular mechanics (MM3) force field has been developed with the assistance of the programs TORSMART and MPMSR, components of our artificial parameter development and refinement method. The MM3 force field is now able to reproduce bond lengths, bond angles, moments of inertia, dipole moments, torsional energy profiles, and vibrational frequencies of oxocarbenium ions, which will allow further studies of glycoside hydrolysis and their rates of reaction. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 329–339, 2000  相似文献   

3.
Molecular mechanics (MM4) calculations were carried out on cycloketones for ring sizes ranging from 4 to 11 carbon atoms. The MM4 relative energies for the various conformations of the cycloketones were compared to density functional theory (DFT) calculations (B3LYP/6‐31G*), which were also carried out in this work. For small ring sizes (n=4–6), calculated molecular geometries, dipole moments, moments of inertia, and vibrational spectra were compared to experimental data. The axial–equatorial energy differences in methyl‐substituted cyclohexanones were also calculated by MM4 and compared to ab initio, DFT, and experimental results. The results of the MM4 studies on cycloketones showed significant improvement from those of MM3 calculations performed in parallel with the MM4 calculations. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1451–1475, 2001  相似文献   

4.
The MM3 force field has been extended to include azoxy compounds and also the related amine oxides, both aliphatic and aromatic. The structures of nine molecules were all well fit. The heats of formation for the aliphatic compounds were also well fit, and the vibrational spectra of eight compounds were also fit to the accuracy expected for such calculations. Because many of the experimental data needed to derive the force field were either lacking or were inadequate, ab initio calculations on structures, optimized at the MP2/6-31G* level, were used as needed. © 1994 by John Wiley & Sons, Inc.  相似文献   

5.
Aliphatic aldehydes have been studied with the aid of the MM4 force field. The structures, moments of inertia, vibrational spectra, conformational energies, barriers to internal rotation, and dipole moments have been examined for six compounds (nine conformations). MM4 parameters have been developed to fit the indicated quantities to the wide variety of experimental data. Ab initio (MP2) and density functional theory (B3LYP) calculations have been used to augment and/or replace experimental data, as appropriate. Because more, and to some extent, better, data have become available since MM3 was developed, it was anticipated that the overall accuracy of the information calculated with MM4 would be better than with MM3. The best single measure of the overall accuracy of a force field is the accuracy to which the moments of inertia of a set of compounds (from microwave spectroscopy) can be reproduced. For all of the 20 moments (seven conformations) experimentally known for the aldehyde compounds, the MM4 rms error is 0.30%, while with MM3, the most accurate force field presently available, the rms error over the same set is 1.01%. The calculation of the vibrational spectra was also improved overall. For the four aldehydes that were fully analyzed (over a total of 78 frequencies), the rms errors with MM4 and MM3 are 18 and 38 cm?1, respectively. These improvements came from several sources, but the major ones were separate parameters involving the carbonyl carbon for formaldehyde, the alkyl aldehydes and the ketones, and new crossterms featured in the MM4 force field that are not present in the MM3 version. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1396–1425, 2001  相似文献   

6.
The geometries and vibrational frequencies of 11 training molecules containing the ammonium ion moiety were calculated at the MP2/6-31+G* level of theory. Various torsional energy profiles were also calculated using this basis set. From those ab initio calculations, a molecular mechanics (MM3) force field was developed using our Parameter Analysis and Refinement Toolkit System (PARTS). Using this set of parameters, the MM3 force field was found to well reproduce the molecular geometries and vibrational spectra for the all training molecules. CPU time was reduced from days to seconds. The availability of this new force field dramatically increases the feasibility of the computer-assisted drug design involving ammonium and protonated amino groups. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18 : 1371–1391, 1997  相似文献   

7.
Simple and very efficient formulas are presented for four-body out-of-plane bend (used in MM2 and MM3 force fields) and improper torsion (used in the MM4 force field) internal coordinates and their first and second derivatives. The use of a small set of bend and stretch intermediates allows for order of magnitude decreases in calculation time for potential energies and their first and second derivatives, which are required in molecular mechanics calculations. The formulas are eminently suitable for use in molecular simulations of systems with complicated bond networks. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1804–1811, 1997  相似文献   

8.
Molecular mechanics (MM4) calculations on the heats of formation of aldehydes and ketones were carried out for a total of 59 compounds (10 aldehydes and 49 ketones). Optimization of the heat of formation parameters was obtained by a least squares fit to the experimentally known heats of formation. With the optimized MM4 heat of formation parameters, the MM4 calculated heats of formation showed significant improvement over those of MM3. The standard and weighted root mean square deviations for the MM4 values were 0.35 and 0.31 kcal mol?1, respectively, whereas for the MM3 values they were 0.42 and 0.39 kcal mol?1, respectively. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1476–1483, 2001  相似文献   

9.
The structures of several sulfones, including dimethyl sulfone, methyl ethyl sulfone, methyl vinyl sulfone, and diphenyl sulfone, have been fit with the MM3 force field to existing experimental data from electron diffraction and microwave spectroscopy. The vibrational spectra have also been fit for six of these compounds. The torsional parameters for the aliphatic sulfones were fit to ab initio 6-31G data. Heats of formation were also fit. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Open‐chain aliphatic ketones were studied with the molecular mechanics (MM4) force field. A total of seven compounds were examined. Structures were well fit, including moments of inertia. Rotational barriers, vibrational spectra, and dipole moments were also well fit. The overall root mean square errors for MM3 and MM4 were 0.27 and 0.18%, respectively, for the six moments of inertia (known experimentally for two compounds) and 31 and 20 cm?1, respectively, for the vibrational frequencies (over 99 weighted modes). © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1426–1450, 2001  相似文献   

11.
The MM3 molecular mechanics program has been extended to conjugated systems. A VESCF method is applied to the pi-system to calculate bond orders, from which various stretching and torsional parameters are obtained. The procedure gives somewhat better results than the analogous MM2 calculations. It has been applied to a study of 81 compounds of aromatic and other conjugated hydrocarbons, as well as 45 alkenes and unconjugated polyenes. The structures calculated are generally in good agreement with experiment, and the heats of formation of these compounds can be calculated with a rms value of 0.62 kcal/mol, which may be compared with the average experimental error of 0.61 kcal/mol. In addition, vibrational frequencies for five representative conjugated model structures are calculated, with an rms value of 46 cm?1, and from these, other properties such as entropy can be calculated.  相似文献   

12.
The MM3 force field has been extended to cover alkyl radicals. Structures, conformational energies, vibrational spectra, and heats of formation have been well fit, mostly to ab initio data. © 1994 by John Wiley & Sons, Inc.  相似文献   

13.
A series of bicycloalkyl hydrocarbons were studied using molecular mechanics methods (MM3), and the results were compared with the experimental data available. Five compounds were studied: bicyclopropyl, bicyclobutyl, bicyclopentyl, bicyclohexyl and 2,3-dimethylbutane. In general, the MM3 results are in good agreement with experimental values. Predicted structures and conformations are given for the bicyclopentyl previously uninvestigated experimentally.  相似文献   

14.
Enantioselective preference in the asymmetric synthesis where cyclohexene oxide is transformed enantioselectively to chiral (S)- or (R)-2-cyclohexen-1-ol by the reaction with the appropriate chiral lithium amide reagent has been evaluated theoretically using the MM3 force field. The plausible possible structures for each precursor (reaction intermediate complex) leading to a (S)- or (R)-2-cyclohexen-1-ol have been optimized with the extended MM3 force field applicable to the lithium amide functional group, and the populations of their (S)- or (R)-reaction intermediate complexes at an ambient temperature (298 K) were calculated. The initial structure for evaluating the reaction intermediates of this asymmetric synthesis was constructed on the basis of the optimized ab initio transition state structure (MP2/6-31+G) comprising lithium amide LiNH2 and propene oxide. To the thus obtained transition state structure composed of LiNH2 and propene oxide, the other remaining Cartesian coordinates for the actual reaction intermediates composed of the chiral lithium amides and cyclohexene oxide were added to make the reaction intermediate structure. The conformational search for the reaction intermediate has been carried out by using the Stochastic search Algorithm, and the optimized geometries and their conformational energies (steric energies) have been calculated by the MM3 force field. The populations calculated from the conformational energies of the reaction intermediate leading to the (S)- or (R)-2-cyclohexen-1-ol were shown to be linearly well correlated with the experimentally reported enantiomer excess (% ee) values. The critical factors to control the enantioselectivity were investigated on the basis of the optimized structures of the reaction intermediate complexes. The MM3 force field approach was shown to be applicable to the theoretical evaluation of the enantioselectivity and be useful for designing a new functional chiral lithium amide reagent for the asymmetric synthesis.  相似文献   

15.
Molecular mechanics (MM2) calculations were performed on 54 conformations of 18 phosphines (PH3; PH3−nRn, where n = 1,…3, and R = Me and Et, n = 1 or 2 and R =iPr, and n = 1 and R =tBu, PMe2Et, PMeEt2, and PPhMe2, and PPh2R where R = Me, Et, iPr, tBu and Ph). The results are compared to those previously obtained from MINDO/3 and MNDO calculations, and to experimental data. Single conformer cone angles and weighted average cone angles were calculated from MM2 optimized geometries employing Tolman's general definition, and they are compared to Tolman's values, MINDO/3 results, and T.L. Brown's ER values. Of the cone angle definitions used, the weighted average values are suggested as the best single representation of phosphine ligand sizes. The steric parameters (cone angle and ER values) alone, and in conjunction with electronic parameters, are correlated with experimental data.  相似文献   

16.
The MM4 force field has been extended to the title class of compounds. The vibrational spectra, structures, conformational equilibria, and heats of formation have been studied for 47 conformers of 29 compounds. In general, the properties may be calculated with accuracy that is competitive with that for hydrocarbons. The structures are better fit than previously because of the inclusion of a torsion–bend interaction term, which has its origin in the lone pair (Bohlmann) effect. Available experimental data do not suffice to yield detailed torsional potentials, or geometries as a function of torsion angle, and these quantities were determined by ab initio calculations at the MP2/6-31G* level. The rms error in the calculated frequencies of seven representative structures (with a total of 64 experimental and 96 ab initio frequencies) is 25 cm−1. The heats of formation for 23 compounds have a weighted rms error of 0.36 kcal/mol. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1827–1847, 1997  相似文献   

17.
The MM2 and MM3 force fields have been extended to cover this class of compounds. Structures, vibrational spectra, and other data for 13 compounds were examined and can be reproduced satisfactorily by MM3. Except for the spectra, the other data can be reproduced somewhat less well by MM2. © 1994 by John Wiley & Sons, Inc.  相似文献   

18.
The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER* force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.  相似文献   

19.
20.
Simple alcohols and ethers have been studied with the MM4 force field. The structures of 13 molecules have been well fit using the MM4 force field. Moments of inertia have been fit with rms percentage errors as indicated: 18 moments for ethers, 0.28%; 21 moments for alcohols, 0.22%. Rotational barriers and conformational equilibria have also been examined, and the experimental and ab initio results are reproduced substantially better with MM4 than they were with MM3. Much of the improvement comes from the use of additional interaction terms in the force constant matrix, of which the torsion-bend and torsion-torsion are particularly important. Induced dipoles are included in the calculation, and dipole moments are reasonably well fit. It has been possible for the first time to fit conformational energetic data for both open chain and cyclic alcohols (e.g., propanol and cyclohexanol) with the same parameter set. For vibrational spectra, over a total of 82 frequencies, the rms error is 27 cm(-1), as opposed to 38 cm(-1) with MM3. Both the alpha and beta bond shortening resulting from the presence of the electronegative oxygen atom in the molecule are well reproduced. The electronegativity of the oxygen is sufficient that one must also include not only the alpha and beta electronegativity effects on bond lengths, but also on angle distortions, if structures are to be well reproduced. The heats of formation of 32 alcohols and ethers were fit overall to within experimental error (weighted standard deviation error 0.26 kcal/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号