首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The MM4 force field has been extended to include aliphatic amines. About 20 amines have been examined to obtain a set of useful molecular mechanics parameters for this class. The vibrational spectra of seven amines (172 frequencies) calculated by MM4 have an overall rms error of 27 cm(-1), compared with corresponding MM4 value of 24 cm(-1) for alkanes. The rms and signed average errors of the moments of inertia of nine simple amines compared with the experimental data were 0.18% and -0.004%, respectively. The heats of formation of 30 amines were also studied. The MM4 weighted standard deviation is 0.41 kcal/mol, compared with experiment. Electronegativity effects occur in the hydrocarbon portion of an amine from the nitrogen, and are accounted for by including electronegativity induced changes in bond lengths and angles, and induced dipole-dipole interactions in the molecule. Negative hyperconjugation results from the presence of the lone pair of electrons on nitrogen, and leads to the Bohlmann bands in the infrared, and also to strong and unusual geometric changes in the molecules (Bohlmann effect), all of which are fairly well accounted for. The conformational energies in amines appear to be less straightforward than those for most other classes of molecules, apparently because of the Bohlmann effect, and these are probably not yet completely understood. In general, the agreement between the MM4 calculated results and the available data is reasonably good.  相似文献   

3.
The synthesis of the alkaloid jamtine and the antidepressant paroxetine have been addressed by a strategy involving asymmetric desymmetrisation of prochiral imides by a chiral lithium amide base. A short reaction sequence, starting with a cyclohexane fused succinimide, led to the structures originally reported for the alkaloid jamtine and its derived N-oxide. The structures synthesised are shown not to correspond with those originally reported. A second sequence involves desymmetrisation of a 4-arylglutarimide, and provides a short enantioselective synthesis of the drug substance paroxetine.  相似文献   

4.
In this paper, new possibilities for metal amides are described. Although typical metal amides are recognized as strong stoichiometric bases for deprotonation of inert or less acidic hydrogen atoms, transition‐metal amides, namely silver and copper amides, show interesting abilities as one of the simplest acid/base catalysts in stereoselective carbon–carbon bond‐forming reactions.  相似文献   

5.
Enantioselective preference in the asymmetric synthesis where cyclohexene oxide is transformed enantioselectively to chiral (S)- or (R)-2-cyclohexen-1-ol by the reaction with the appropriate chiral lithium amide reagent has been evaluated theoretically using the MM3 force field. The plausible possible structures for each precursor (reaction intermediate complex) leading to a (S)- or (R)-2-cyclohexen-1-ol have been optimized with the extended MM3 force field applicable to the lithium amide functional group, and the populations of their (S)- or (R)-reaction intermediate complexes at an ambient temperature (298 K) were calculated. The initial structure for evaluating the reaction intermediates of this asymmetric synthesis was constructed on the basis of the optimized ab initio transition state structure (MP2/6-31+G) comprising lithium amide LiNH2 and propene oxide. To the thus obtained transition state structure composed of LiNH2 and propene oxide, the other remaining Cartesian coordinates for the actual reaction intermediates composed of the chiral lithium amides and cyclohexene oxide were added to make the reaction intermediate structure. The conformational search for the reaction intermediate has been carried out by using the Stochastic search Algorithm, and the optimized geometries and their conformational energies (steric energies) have been calculated by the MM3 force field. The populations calculated from the conformational energies of the reaction intermediate leading to the (S)- or (R)-2-cyclohexen-1-ol were shown to be linearly well correlated with the experimentally reported enantiomer excess (% ee) values. The critical factors to control the enantioselectivity were investigated on the basis of the optimized structures of the reaction intermediate complexes. The MM3 force field approach was shown to be applicable to the theoretical evaluation of the enantioselectivity and be useful for designing a new functional chiral lithium amide reagent for the asymmetric synthesis.  相似文献   

6.
7.
    
This article presents an approach using fractal to solve the multiple minima problem. We use the Newton–Raphson method of the MM3 molecular mechanics program to scan the conformational spaces of a model molecule and a real molecule. The results show each energy minimum, maximum point, and saddle point has a basin of initial points converging to it in conformational spaces. Points converging to different extrema are mixed, and form fractal structures around basin boundaries. Singular points seem to involve in the formation of fractal. When searching within a small region of fractal basin boundaries, the self‐similarity of fractal makes it possible to find all energy minima, maxima, and saddle points from which global minimum may be extracted. Compared with other methods, this approach is efficient, accurate, conceptually simple, and easy to implement. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1101–1108, 2000  相似文献   

8.
Chiral Lewis acid catalysis has emerged as one of the premiere method to control stereochemistry. Much effort has gone into the design of superior ligands with increasing steric extension to shield distant reactive sites. We report here an alternative and complementary approach based on a "chiral relay". This strategy focuses on the improved design of achiral templates which may relay and amplify the stereochemistry from ligands. The essence of this strategy is that the chiral Lewis acid would effectively convert an achiral template into a chiral non-racemic template. This approach combines the advantages of enantioselective catalysis (substoichiometric amount of the chiral inducer) with the ones of chiral auxiliary control (efficient and predictable stereocontrol).  相似文献   

9.
10.
    
Simple alcohols and ethers have been studied with the MM4 force field. The structures of 13 molecules have been well fit using the MM4 force field. Moments of inertia have been fit with rms percentage errors as indicated: 18 moments for ethers, 0.28%; 21 moments for alcohols, 0.22%. Rotational barriers and conformational equilibria have also been examined, and the experimental and ab initio results are reproduced substantially better with MM4 than they were with MM3. Much of the improvement comes from the use of additional interaction terms in the force constant matrix, of which the torsion-bend and torsion-torsion are particularly important. Induced dipoles are included in the calculation, and dipole moments are reasonably well fit. It has been possible for the first time to fit conformational energetic data for both open chain and cyclic alcohols (e.g., propanol and cyclohexanol) with the same parameter set. For vibrational spectra, over a total of 82 frequencies, the rms error is 27 cm(-1), as opposed to 38 cm(-1) with MM3. Both the alpha and beta bond shortening resulting from the presence of the electronegative oxygen atom in the molecule are well reproduced. The electronegativity of the oxygen is sufficient that one must also include not only the alpha and beta electronegativity effects on bond lengths, but also on angle distortions, if structures are to be well reproduced. The heats of formation of 32 alcohols and ethers were fit overall to within experimental error (weighted standard deviation error 0.26 kcal/mol).  相似文献   

11.
    
Optically enriched secondary alkyl iodides were converted into secondary alkyllithium and secondary alkylcopper compounds with very high retention of configuration. Quenching with various electrophiles, including chiral epoxides, provided a range of chiral molecules with high enantiomeric purity (>90 % ee). This method has been applied in an iterative fashion in the total synthesis of (?)‐lardolure in 13 steps and 5.4 % overall yield (>99 % ee, dr>99:1) and siphonarienal in 15 steps and 5.6 % overall yield (>99 % ee, dr>99:1) starting from commercially available ethyl (R)‐3‐hydroxybutyrate (>99 % ee).  相似文献   

12.
13.
    
A cooperative catalysis approach for the enantioselective formal [3+2] addition of α,β-unsaturated aldehydes to isatins has been developed. Homoenolate annulations of β-aryl enals catalyzed by an N-heterocyclic carbene (NHC) require the addition of lithium chloride for high levels of enantioselectivity. This NHC-catalyzed annulation has been used for the total synthesis of maremycin B.  相似文献   

14.
We describe a new strategy for enantio- and diastereoselective syntheses of all possible stereoisomers of 1,3-polyol arrays. This strategy relies on a highly catalyst-controlled epoxidation of alpha,beta-unsaturated morpholinyl amides promoted by the Sm-BINOL-Ph(3)As[double bond]O (1:1:1) complex, followed by a conversion of morpholinyl amides into ketones and diastereoselective ketone reduction. Highly enantio- (up to >99 % ee) or diastereoselective (up to >99.5:0.5) epoxidation was achieved using 5-10 mol % of the Sm complex to afford synthetically very useful, nearly optically pure alpha,beta-epoxy morpholinyl amides. Stereoselectivity of the epoxidation was controlled by the chirality of BINOL with overwhelming inherent diastereofacial preference for the substrate. Combination with the syn- and anti-selective ketone reduction with the highly catalyst-controlled epoxidation allowed for an iterative strategy for the syntheses of all possible stereoisomers of 1,3-polyol arrays. Eight possible stereoisomers of 1,3,5,7-tetraol arrays were synthesized with high to excellent stereoselectivity. Moreover, the efficiency of the present strategy was successfully demonstrated by enantioselective syntheses of several 1,3-polyol/alpha-pyrone natural products, for example, cryptocaryolone diacetate.  相似文献   

15.
16.
Granatanone (granatan-3-one, 9-methyl-9-azabicyclo[3.3.1]nonan-3-one, pseudopelletierine or pseudopelletrierin) undergoes deprotonation with lithium amides giving a lithium enolate, which reacts with aldehydes diastereoselectively giving exclusively exo isomers and anti/syn selectivity up to 98:2. Granatanone can be enantioselectively lithiated by chiral lithium amides and the resulting non-racemic enolate can be reacted with aldehydes giving aldols with enantiomeric excess up to 93% (99% ee after recrystallization). The absolute and relative configuration of the aldol products was determined by NMR spectroscopy and X-ray analysis.Granatanone; aldol reaction; asymmetric synthesis; enantioselective deprotonation; chiral lithium amide.  相似文献   

17.
俞杰  龚流柱 《化学进展》2020,32(11):1729-1744
自从L-脯胺酰胺被发现能高效催化不对称aldol反应以来,手性氨基酸酰胺催化剂的设计及不对称催化研究一直受到关注.特别是“烯胺-双氢键”模型的提出为设计新型有机小分子催化剂提供了理论依据,使催化剂的结构设计趋于多样化.本文重点总结了含有单氢键给体、双氢键给体及多氢键给体的氨基酸酰胺催化的不对称催化反应,主要包括不对称直...  相似文献   

18.
Simple and very efficient formulas are presented for four-body out-of-plane bend (used in MM2 and MM3 force fields) and improper torsion (used in the MM4 force field) internal coordinates and their first and second derivatives. The use of a small set of bend and stretch intermediates allows for order of magnitude decreases in calculation time for potential energies and their first and second derivatives, which are required in molecular mechanics calculations. The formulas are eminently suitable for use in molecular simulations of systems with complicated bond networks. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1804–1811, 1997  相似文献   

19.
    
The physical properties of a diverse group of 12 oxocarbenium ions have been studied with ab initio calculations at the MP2/6‐31+G* level of theory. Based on theoretically derived properties such as molecular equilibrium geometry, dipole moment, and vibrational frequencies, a molecular mechanics (MM3) force field has been developed with the assistance of the programs TORSMART and MPMSR, components of our artificial parameter development and refinement method. The MM3 force field is now able to reproduce bond lengths, bond angles, moments of inertia, dipole moments, torsional energy profiles, and vibrational frequencies of oxocarbenium ions, which will allow further studies of glycoside hydrolysis and their rates of reaction. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 329–339, 2000  相似文献   

20.
    
The geometries and vibrational frequencies of 11 training molecules containing the ammonium ion moiety were calculated at the MP2/6-31+G* level of theory. Various torsional energy profiles were also calculated using this basis set. From those ab initio calculations, a molecular mechanics (MM3) force field was developed using our Parameter Analysis and Refinement Toolkit System (PARTS). Using this set of parameters, the MM3 force field was found to well reproduce the molecular geometries and vibrational spectra for the all training molecules. CPU time was reduced from days to seconds. The availability of this new force field dramatically increases the feasibility of the computer-assisted drug design involving ammonium and protonated amino groups. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18 : 1371–1391, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号