首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The old Bohr–Einstein debate about the completeness of quantum mechanics (QM) was held on an ontological ground. The completeness problem becomes more tractable, however, if it is preliminarily discussed from a semantic viewpoint. Indeed every physical theory adopts, explicitly or not, a truth theory for its observative language, in terms of which the notions of semantic objectivity and semantic completeness of the physical theory can be introduced and inquired. In particular, standard QM adopts a verificationist theory of truth that implies its semantic nonobjectivity; moreover, we show in this paper that standard QM is semantically complete, which matches Bohr's thesis. On the other hand, one of the authors has provided a Semantic Realism (or SR) interpretation of QM that adopts a Tarskian theory of truth as correspondence for the observative language of QM (which was previously mantained to be impossible); according to this interpretation QM is semantically objective, yet incomplete, which matches EPR's thesis. Thus, standard QM and the SR interpretation of QM come to opposite conclusions. These can be reconciled within an integrationist perspective that interpretes non-Tarskian theories of truth as theories of metalinguistic concepts different from truth.  相似文献   

2.
《中国物理 B》2021,30(6):60305-060305
We generalize BB84 quantum key distribution(QKD) to the scenario where the receiver adopts a heralded quantum memory(QM). With the heralded QM, the valid dark count rate of the receiver's single photon detectors can be mitigated obviously, which will lower the quantum bit error rate, and thus improve the performance of decoy-state BB84 QKD systems in long distance range. Simulation results show that, with practical experimental system parameters, decoy-state BB84 QKD with QM can exhibit performance comparable to that of without QM in short distance range, and exhibit performance better than that without QM in long distance range.  相似文献   

3.
One of the authors has recently propounded an SR (semantic realism) model which shows, circumventing known no-go theorems, that an objective (noncontextual, hence local) interpretation of quantum mechanics (QM) is possible. We consider here compound physical systems and show why the proofs of nonlocality of QM do not hold within the SR model, which is slightly simplified in this paper. We also discuss quantum measurement theory within this model, note that the objectification problem disappears since the measurement of any property simply reveals its unknown value, and show that the projection postulate can be considered as an approximate law, valid FAPP (for all practical purposes). Finally, we provide an intuitive picture that justifies some unusual features of the SR model and proves its consistency.  相似文献   

4.
5.
The extended semantic realism (ESR) model proposes a new theoretical perspective which embodies the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) into a noncontextual framework, reinterpreting quantum probabilities as conditional instead of absolute. We provide in this review an overall view on the present status of our research on this topic. We attain in a new, shortened way a mathematical representation of the generalized observables introduced by the ESR model and a generalization of the projection postulate of elementary QM. Basing on these results we prove that the Bell-Clauser-Horne-Shimony-Holt (BCHSH) inequality, a modified BCHSH inequality and quantum predictions hold together in the ESR model because they refer to different parts of the picture of the physical world supplied by the model. Then we show that a new mathematical representation of mixtures must be introduced in the ESR model which does not coincide with the standard representation in QM and avoids some deep problems that arise from the representation of mixtures provided by QM. Finally we get a nontrivial generalization of the Lüders postulate, which is justified in a special case by introducing a reasonable physical assumption on the evolution of the compound system made up of the measured system and the measuring apparatus.  相似文献   

6.
According to the standard interpretation of quantum mechanics (QM), no meaning can be assigned to the statement that a particle has a precise value of any one of the variables describing its physical propertes before having interacted with a suitable measuring instrument. On the other hand, it is well known that QM tends to classical statistical mechanics (CSM) when a suitable classical limit is performed. One may ask therefore how is it that in this limit, the statement, meaningless in QM, that a given variable has always a precise value independently of having been measured, gradually becomes meaningful. In other words, one may ask how can it be that QM, which is a theory describing the intrinsically probabilistic properties of a quantum object, becomes a statistical theory describing a probabilistic knowledge of intrinsically well determined properties of classical objects.In the present paper we try to answer to this question and show that an inconsistency arises between the conventional interpretation of CSM which presupposes objectively existing Newtonian trajectories, and the standard interpretation of QM. We conclude that the latter needs revisiting unnless we wish to adopt a strictly subjective conception of the world around us, implying that macroscopic objects as well are not localized anywhere before we look at them.  相似文献   

7.
We discuss the problems of quantum theory (QT) complicating its merging with general relativity (GR). QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics (QM) and quantum field theory (QFT) are the most widely known (but, e.g., Bohmian mechanics is also a part of QT). The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the main point of the paper: it is meaningless to try to unify QFT so heavily suffering of infinities with GR. We also highlight difficulties of the QFT-treatment of entanglement. We compare the QFT and QM based measurement theories by presenting both theoretical and experimental viewpoints. Then we discuss two basic mathematical constraints of both QM and QFT, namely, the use of real (and, hence, complex) numbers and the Hilbert state space. We briefly present non-archimedean and non-hilbertian approaches to QT and their consequences. Finally, we claim that, in spite of the Bell theorem, it is still possible to treat quantum phenomena on the basis of a classical-like causal theory. We present a random field model generating the QM and QFT formalisms. This emergence viewpoint can serve as the basis for unification of novel QT (may be totally different from presently powerful QM and QFT) and GR. (It may happen that the latter would also be revolutionary modified.)  相似文献   

8.
Nonobjectivity of physical properties enters physics with the standard interpretation of quantum mechanics (QM), and a number of paradoxes of this theory follow from it. It seems, however, based on sound physical arguments (double slit experiment, Heisenberg's principle, Bell–Kochen–Specker theorem, etc.), so that most physicists think that avoiding it is impossible. We discuss these arguments here and show that they can be criticized from a physical viewpoint. Our criticism proves that nonobjectivity must be considered an epistemological choice rather than an unavoidable feature of QM, so that an objective interpretation of QM is not a priori impossible, which justifies our attempt at providing it in some previous papers. This interpretation is based on a classical language in which the language of the standard interpretation (Quantum Logic) is embedded as a subset of statements that are directly testable according to QM.  相似文献   

9.
10.
The extended semantic realism (ESR) model proposes a theoretical perspective which reinterprets quantum probabilities as conditional on detection rather than absolute and embodies the mathematical formalism of standard (Hilbert space) quantum mechanics (QM) in a noncontextual, hence local, framework. The assumptions needed to prove the Bell inequality therefore hold in the ESR model, but we show that the Bell inequality must be substituted in it by the modified Bell inequality and that the standard quantum expectation values, when reinterpreted as proposed by the ESR model, do not violate the latter inequality. Hence the long-standing conflict between ??local realism?? and QM is settled in the ESR model. Finally we provide an elementary example of a prediction that might be used to check whether the ESR model is correct.  相似文献   

11.
The Geneva–Brussels approach to quantum mechanics (QM) and the semantic realism (SR) nonstandard interpretation of QM exhibit some common features and some deep conceptual differences. We discuss in this paper two elementary models provided in the two approaches as intuitive supports to general reasonings and as a proof of consistency of general assumptions, and show that Aerts’ quantum machine can be embodied into a macroscopic version of the microscopic SR model, overcoming the seeming incompatibility between the two models. This result provides some hints for the construction of a unified perspective in which the two approaches can be properly placed.  相似文献   

12.
The Einstein–Podolsky–Rosen (EPR) paradox represents one of the most controversial aspects of quantum mechanics (QM). In this paper, we suggest that it can be solved by taking into account the fact that physical quantum phenomena can be extended backward in time (i.e. we take into account two arrows of time instead of one). We derive such a strong statement as a consequence of symmetries and conservation laws implying field equations which are invariant under time reversal. Our approach, violating Einstein's locality postulate, confirms QM predictions and explains the failure of Bell's inequalities.  相似文献   

13.
An improved, more general method for performing multicentred integrated QM/QM calculations is presented. The new approach allows the multicentred approximation to be extended to overlapping model systems, removing a significant limitation of the original approach. The usefulness and numerical accuracy of the equations presented are confirmed via some applications to dipole–dipole, charge–dipole and charge–charge complexes. The method performs well for all of these complexes, which range from very weakly to very strongly bound and in which non-additivity effects on interaction energies range from 0.2 to 17kcalmol?1.  相似文献   

14.
Dequantization is a set of rules which turn quantum mechanics (QM) into classical mechanics (CM). It is not the WKB limit of QM. In this paper we show that, by extending time to a 3-dimensional “supertime,” we can dequantize the system in the sense of turning the Feynman path integral version of QM into the functional counterpart of the Koopman-von Neumann operatorial approach to CM. Somehow this procedure is the inverse of geometric quantization and we present it in three different polarizations: the Schrödinger, the momentum and the coherent states ones.  相似文献   

15.
We represent Born’s rule as an analog of the formula of total probability (FTP): the classical formula is perturbed by an additive interference term. In this note we consider practically the most general case: generalized quantum observables given by positive operator valued measures and measurement feedback on states described by atomic instruments. This representation of Born’s rule clarifies the probabilistic structure of quantum mechanics (QM). The probabilistic counterpart of QM can be treated as the probability update machinery based on the special generalization of classical FTP. This is the essence of the Växjö interpretation of QM: statistical realist contextual and local interpretation. We analyze the origin of the additional interference term in quantum FTP by considering the contextual structure of the two slit experiment which was emphasized by R. Feynman.  相似文献   

16.
The standard axiomatization of quantum mechanics (QM) is not fully explicit about the role of the time-parameter. Especially, the time reference within the probability algorithm (the Born Rule, BR) is unclear. From a probability principle P1 and a second principle P2 affording a most natural way to make BR precise, a logical conflict with the standard expression for the completeness of QM can be derived. Rejecting P1 is implausible. Rejecting P2 leads to unphysical results and to a conflict with a generalization of P2, a principle P3. All three principles are shown to be without alternative. It is thus shown that the standard expression of QM completeness must be revised. An absolutely explicit form of the axioms is provided, including a precise form of the projection postulate. An appropriate expression for QM completeness, reflecting the restrictions of the Gleason and Kochen-Specker theorems is proposed.  相似文献   

17.
This Letter is an attempt to go beyond QM. In our approach density operators of QM can be represented as covariance operators of classical random fields. Born's rule can be obtained from measurement theory for classical random field under the assumption that the probability of detection of field is proportional to the power of this field.  相似文献   

18.
The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ΛCDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me,h,e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ e2/(hc) keeps to be invariant; (ii) (2s1/2-2p1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting Δ E(z) are calculated analytically, which belongs to O(1/R2)-physics of dS-SR QM. Numerically, we find that when |R|~{103Gly, 104Gly, 105Gly}, and z~{1,or 2}, the Δ E(z)>>1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.  相似文献   

19.
Particle physics has become an interesting testing ground for fundamental questions of quantum mechanics (QM). The massive meson-antimeson systems are specially suitable as they offer a unique laboratory to test various aspects of particle physics ( violation, violation, ...) as well to test the foundations of QM (local realistic theories versus QM, Bell inequalities, decoherence effects, quantum marking and erasure concepts, ...). We focus here on a surprising connection between the violation of a symmetry in particle physics –the symmetry ( =charge conjugation, =parity)– and non-locality. This is achieved via Bell inequalities which discriminate between local realistic theories and QM. Further we present a decoherence model which can be tested by accelerator experiments at the DAΦNE (Italy) and at the KEK-B machine (Japan). We show that there is a simple connection between a decoherence parameter and different measures of entanglement, i.e., entanglement of formation and concurrence. In this way the very basic mathematical and theoretical concepts about entanglement can be confronted directly with experiments. Similar decoherence models can also be tested for entangled photon systems and single neutrons in an interferometer.  相似文献   

20.
The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (Qaudi) and Muntian et al. (QM) have been tested to find that the cluster model with Qaudi and QM could provide reliable results for Z>112 but the GLDM with Qaudi for Z≤112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号