首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single‐cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single‐cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding.  相似文献   

2.
Demirci U  Montesano G 《Lab on a chip》2007,7(11):1428-1433
The capability to encapsulate single cells in droplets while retaining high cell viability (>90%) has great impact on tissue engineering, high-throughput screening, as well as clinical diagnostics and therapeutics. We demonstrate a novel method to vitrify a small number of cells using cell-encapsulating droplets. The method allows vitrification at low cryoprotectant concentration (1.5 M propanediol and 0.5 M trehalose), similar to that used in slow freezing protocols. The method was successfully applied to five different mammalian cell types: AML-12 hepatocytes, NIH-3T3 fibroblasts, HL-1 cardiomyocytes, mouse embryonic stem cells, and RAJI cells.  相似文献   

3.
Cell sorting and separation techniques are essential tools for cell biology research and for many diagnostic and therapeutic applications. For many of these applications, it is imperative that heterogeneous populations of cells are segregated according to their cell type and that individual cells can be isolated and analysed. We present a novel technique to isolate single cells encapsulated in a picolitre sized droplet that are then deposited by inkjet-like printing at defined locations for downstream genomic analysis. The single-cell-manipulator (SCM) developed for this purpose consists of a dispenser chip to print cells contained in a free flying droplet, a computer vision system to detect single-cells inside the dispenser chip prior to printing, and appropriate automation equipment to print single-cells onto defined locations on a substrate. This technique is spatially dynamic, enabling cell printing on a wide range of commonly used substrates such as microscope slides, membranes and microtiter plates. Demonstration experiments performed using the SCM resulted in a printing efficiency of 87% for polystyrene microbeads of 10 μm size. When the SCM was applied to a cervical cancer cell line (HeLa), a printing efficiency of 87% was observed and a post-SCM cell viability rate of 75% was achieved.  相似文献   

4.
Wang Z  Zhe J 《Lab on a chip》2011,11(7):1280-1285
Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.  相似文献   

5.
Circularly shaped polymeric droplets with diameter of about 20 μm have been intermittently ejected and deposited in an orderly manner on a collector from a syringe needle by means of near-field, electrohydrodynamic reactions using pulsating voltages at around 2.25 kV. The needle has an inner diameter of 100 μm and was placed 1 mm above a silicon conductor substrate to have location control for droplet depositions. Under low-frequency operation of less than 100 Hz, the deposition frequency of droplets, f(dep), has been observed to be equal to the frequency of the applied driving voltage divided by an integer, N, as small as 1. Furthermore, the diameter of the deposited droplets has been found to be linearly dependent on (Q/f(dep))(1/3), where Q is the polymer solution supply rate at around 30 nL/s. These experimentally observed droplet ejection rules under low-frequency pulsation provide useful design guidelines for controllable deposition of polymer droplets in various potential applications, including electrohydrodynamic printing.  相似文献   

6.
Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.  相似文献   

7.
In the past few years,photo-crosslinkable hydrogels have drawn a great attention in tissue engineering applications due to their high biocompatibility and extracellular matrix(ECM)-like structure.They can be easily biofabricated through exposure of a photosensitive system composed of photo-crosslinkable hydrogels,photo-initiators and other compounds such as cells and therapeutic molecules,to ultraviolet or visible light.With the development of biofabrication methods,ma ny resea rchers studied the biological applications of photo-crosslinkable hydrogels in tissue engineering,such as vascular,wound dressing and bone engineering.This review highlights the biomaterials for photo-crosslinkable hydrogels,bio fabrication techniques and their biological applications in tissue engineering.Meanwhile,the challenges and prospects of photo-crosslinkable hydrogels are discussed as well.  相似文献   

8.
Although image-based phenotypic assays are considered a powerful tool for siRNA library screening, the reproducibility and biological implications of various image-based assays are not well-characterized in a systematic manner. Here, we compared the resolution of high throughput assays of image-based cell count and typical cell viability measures for cancer samples. It was found that the optimal plating density of cells was important to obtain maximal resolution in both types of assays. In general, cell counting provided better resolution than the cell viability measure in diverse batches of siRNAs. In addition to cell count, diverse image-based measures were simultaneously collected from a single screening and showed good reproducibility in repetitions. They were classified into a few functional categories according to biological process, based on the differential patterns of hit (i.e., siRNAs) prioritization from the same screening data. The presented systematic analyses of image-based parameters provide new insight to a multitude of applications and better biological interpretation of high content cell-based assays.  相似文献   

9.
Droplet-based microfluidics enables the generation of uniform microdroplets at picoliter or nanoliter scale with high frequency(~kHz) under precise control. The droplets can function as bioreactors for versatile chemical/biological study and analysis. Taking advantage of the discrete compartment with a confined volume,(1) isolation and manipulation of a single cell,(2) improvement of in-droplet effective concentrations,(3) elimination of heterogeneous population effects,(4) diminution of contami...  相似文献   

10.
Droplet microfluidics has emerged as a powerful tool for a diverse range of biomedical and industrial applications such as single-cell analysis, directed evolution, and metabolic engineering. In these applications, droplet sorting has been effective for isolating small droplets encapsulating molecules, cells, or crystals of interest. Recently, there is an increased interest in extending the applicability of droplet sorting to larger droplets to utilize their size advantage. However, sorting throughputs of large droplets have been limited, hampering their wide adoption. Here, we report our demonstration of high-throughput fluorescence-activated droplet sorting of 1 nL droplets using an upgraded version of the sequentially addressable dielectrophoretic array (SADA), which we reported previously. The SADA is an array of electrodes that are individually and sequentially activated/deactivated according to the speed and position of a droplet passing nearby the array. We upgraded the SADA by increasing the number of driving electrodes constituting the SADA and incorporating a slanted microchannel. By using a ten-electrode SADA with the slanted microchannel, we achieved fluorescence-activated droplet sorting of 1 nL droplets at a record high throughput of 1752 droplets/s, twice as high as the previously reported maximum sorting throughput of 1 nL droplets.  相似文献   

11.
以聚吡咯、聚噻吩和聚苯胺为代表的电活性导电聚合物(electroactive conducting polymers,ECP)已成为生物材料、组织工程及临床医学领域关注的焦点.目前研究主要集中在生物相容性、细胞及组织工程、蛋白质分离、DNA吸附修复、可控药物释放、生物传感器、神经探针等方面.ECP在神经细胞、脑细胞、心肌干细胞再生和功能调节,定向诱导组织器官的再生修复方面具有潜在的应用前景.本文主要综述了聚吡咯(PPy)和聚苯胺(PANi)在生物医学领域的研究进展,和电刺激对细胞生长和干细胞分化的影响,并建议了一些前景可观的相关研究方向.  相似文献   

12.
Protein microarrays are rapidly emerging as valuable tools in creating combinatorial cell culture systems where inducers of cellular differentiation can be identified in a rapid and multiplexed fashion. In the present study, protein microarraying was combined with photoresist lithography to enable printing of extracellular matrix (ECM) protein arrays while precisely controlling "on-the-spot" cell-cell interactions. In this surface engineering approach, the micropatterned photoresist layer formed on a glass substrate served as a temporary stencil during the microarray printing, defining the micrometer-scale dimensions and the geometry of the cell-adhesion domains within the printed protein spots. After removal of the photoresist, the glass substrates contained micrometer-scale cell-adhesive regions that were encoded within 300 or 500 microm diameter protein domains. Fluorescence microscopy and atomic force microscopy (AFM) were employed to characterize protein micropatterns. When incubated with micropatterned surfaces, hepatic (HepG2) cells attached on 300 or 500 mum diameter protein spots; however, the extent of cell-cell contacts within each spot varied in accordance with dimensions of the photoresist stencil, from single cells attaching on 30 microm diameter features to multicell clusters residing on 100 or 200 microm diameter regions. Importantly, the photoresist removal process was shown to have no detrimental effects on the ability of several ECM proteins (collagens I, II, and IV and laminin) to support functional hepatic cultures. The micropatterning approach described here allows for a small cell population seeded onto a single cell culture substrate to be exposed to multiple scenarios of cell-cell and cell-surface interactions in parallel. This technology will be particularly useful for high-throughput screening of biological stimuli required for tissue specification of stem cells or for maintenance of differentiated phenotype in scarce primary cells.  相似文献   

13.
Mid-infrared laser ablation of water-rich targets at the maximum of the 2.94 μm absorption band is a two-step process initiated by phase explosion followed by recoil pressure induced material ejection. Particulates and/or droplets ejected by this high temperature high pressure process can be ionized for mass spectrometry by charged droplets from an electrospray. In order to gauge the internal energy introduced in this laser ablation electrospray ionization (LAESI?) process, we apply the survival yield method and compare the results with electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). The results indicate that LAESI yields ions with internal energies indistinguishable from those produced by ESI. This finding is consistent with the recoil pressure induced ejection of low micrometre droplets that does not significantly change the internal energy of solute molecules.  相似文献   

14.
The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.  相似文献   

15.
Core-shell nanofibers are of great interest in the field of tissue engineering and cell biology. We fabricated porous core-shell fiber networks using an electrospinning system with a water-immersed collector. We hypothesized that the phase separation and solvent evaporation process would enable the control of the pore formation on the core-shell fiber networks. To synthesize porous core-shell fiber networks, we used polycaprolactone (PCL) and gelatin. Quantitative analysis showed that the sizes of gelatin-PCL core-shell nanofibers increased with PCL concentrations. We also observed that the shapes of the pores created on the PCL fiber networks were elongated, whereas the gelatin-PCL core-shell fiber networks had circular pores. The surface areas of porous nanofibers were larger than those of the nonporous nanofibers due to the highly volatile solvent and phase separation process. The porous core-shell fiber network was also used as a matrix to culture various cell types, such as embryonic stem cells, breast cancer cells, and fibroblast cells. Therefore, this porous core-shell polymeric fiber network could be a potentially powerful tool for tissue engineering and biological applications.  相似文献   

16.
A collision algorithm was used with SimIon to evaluate collision-mediated ion ejection mechanisms in the ICR MS experiment. These mechanisms were characterized based on kinetic energy, ion mass, applied trapping potential, and collision gas mass. It was found that there are three collision-based energy regimes for ion loss from a trapped-ion cell. The first region is characterized by low initial cyclotron kinetic energy, a radial ejection mode, and a very high collision ratio (>100 collisions per ejection). The second region is characterized by a medium to high initial cyclotron kinetic energy leading to axial ejection at low collision ratio (1 to 10 collisions per ejection). The third region is characterized by a high initial cyclotron kinetic energy, a radial ejection mode, and a collision ratio of unity. It was also determined that there is a radial cyclotron mode limit, approximately 40% of the cell radius, after which an ion is ejected after a single collision. This has important consequences on the damping of the FTICR signal, various cooling techniques, ion activation techniques, and the remeasurement experiment.  相似文献   

17.
In the continuously growing field of industrial biotechnology the scale-up from lab to industrial scale is still a major hurdle to develop competitive bioprocesses. During scale-up the productivity of single cells might be affected by bioreactor inhomogeneity and population heterogeneity. Currently, these complex interactions are difficult to investigate. In this report, design, fabrication and operation of a disposable picolitre cultivation system is described, in which environmental conditions can be well controlled on a short time scale and bacterial microcolony growth experiments can be observed by time-lapse microscopy. Three exemplary investigations will be discussed emphasizing the applicability and versatility of the device. Growth and analysis of industrially relevant bacteria with single cell resolution (in particular Escherichia coli and Corynebacterium glutamicum) starting from one single mother cell to densely packed cultures is demonstrated. Applying the picolitre bioreactor, 1.5-fold increased growth rates of C. glutamicum wild type cells were observed compared to typical 1 litre lab-scale batch cultivation. Moreover, the device was used to analyse and quantify the morphological changes of an industrially relevant l-lysine producer C. glutamicum after artificially inducing starvation conditions. Instead of a one week lab-scale experiment, only 1 h was sufficient to reveal the same information. Furthermore, time lapse microscopy during 24 h picolitre cultivation of an arginine producing strain containing a genetically encoded fluorescence sensor disclosed time dependent single cell productivity and growth, which was not possible with conventional methods.  相似文献   

18.
The field of tissue engineering has made steady progress in translating various tissue applications. Although the classical tissue engineering strategy, which involves the use of culture-expanded cells and scaffolds to produce a tissue construct for implantation, has been validated, this approach involves extensive cell expansion steps, requiring a lot of time and laborious effort before implantation. To bypass this ex vivo process, a new approach has been introduced. In situ tissue regeneration utilizes the body''s own regenerating capacity by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the site of injury. This approach relies on development of a target-specific biomaterial scaffolding system that can effectively control the host microenvironment and mobilize host stem/progenitor cells to target tissues. An appropriate microenvironment provided by implanted scaffolds would facilitate recruitment of host cells that can be guided to regenerating structural and functional tissues.  相似文献   

19.
20.
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号