首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study via molecular dynamics simulations thin films (Newton black films, NBF) consisting of water coated with sodium dodecyl sulfate (SDS) surfactants. We analyze in detail the film properties (distribution of particles, pair correlation functions, roughness of the film, tilt angle of the hydrocarbon chain, electron density profiles, and mobility of water molecules) as a function of water content in the film core (i.e., film thickness, H). Our simulations indicate that water is part of the bilayer structure as solvation water. We estimate that around 2.25 water molecules per surfactant are part of this solvation structure. The structural analysis of the NBF shows that the headgroups exhibit a high degree of in-plane ordering. We find evidence for the existence of cavities in the monolayer, where only water is present. The basic structure of the monolayer is conserved down to water contents of the order of 4 water molecules per surfactant (H approximately equal to 11 A). The computed monolayer roughness for the present model is 2.5 A, in good agreement with the experimental data. We find that the roughness is very sensitive to the details of the interatomic potentials. Water mobility calculations emphasize the sluggish dynamics of very thin NBF. Diffusion coefficients of water in the lateral direction strongly decrease with film thickness. We find that the typical mean squared displacement of water in the direction normal to the bilayer is between 9 and 80 A2. Overall, our results indicate that the equilibrium SDS Newton black films studied in the X-ray experiments contain from 2 to 4 water molecules per surfactant.  相似文献   

2.
Lysopalmitoylphosphatidylcholine (LPC) black films have been studied by confocal Raman spectroscopy and their spectra analyzed and compared to their counterparts obtained from LPC in the solid state and aqueous solution. It appears that LPC is able to form stable and highly ordered black films, despite the presence of only one hydrophobic chain in this molecule. A complementary infrared study of LPC Gibbs monolayers suggests that the whole LPC polar head is perpendicular to the air/water interface. Such an orientation could explain the high order and the close packing observed in black films.  相似文献   

3.
Amphiphile bilayer films are obtained from 1,2 dipalmitoyl-glycero-3-phosphocholine (DPPC): bilayer lipid membranes (BLM) and Newton black films (NBF), through thinning of the respective thin liquid films, thus allowing for a very precise determination of the moment of their formation. Stability (or rupture) and formation of BLM and NBF are considered from a unified point of view with the microscopic theory of Kashchiev–Exerowa [J. Colloid Interface Sci., 77 (1980) 501–511], based on the formation of nanoscopic holes in them. BLM and NBF are obtained and studied with the microinterferometric method of Scheludko–Exerowa in its contemporary version. The equivalent thickness of both BLM (in benzene solution between two water phases with 0.1 M NaCl) and NBF in aqueous DPPC solution (in the presence of 0.1 M NaCl) is determined as being hw = 7.0 nm for BLM and hw = 7.8 nm for NBF. By means of the dependences: BLM lifetime versus DPPC concentration and probability for BLM formation versus DPPC concentration, it is established that there exist metastable BLM and stable NBF. The good fit between the experimental results of τ(C) dependence and theory in the case of BLM allow to determine the three constants: pre-exponential factor A = 1.5 × 10−3 s, related to the process kinetics; constant B = 20.2 ± 0.2, related to the specific hole energy γ = 1.7 × 10−11 J/m and the equilibrium concentration Ce = 6 × 10−4 ± 7.2 × 10−6 m/l. The specific hole linear energy γ = 1.7 × 10−11 J/m determined as well as the binding energy Q between first neighbor molecules in the bilayers Q = 1.48 × 10−19 J (36 kT) are lower than the ones determined for DPPC foam bilayer in gel state γ = 9.1 × 10−11 J/m and Q = 55 kT. This means that interaction is weaker in the case of BLM. The critical concentration Cc at which bilayer formation starts is: for BLM Cc = 30 μg/ml and for NBF Cc = 70 μg/ml. This concentration characterizes quantitatively the formation of the amphiphile bilayer and is a very useful parameter that can be used for various purposes.  相似文献   

4.
We report molecular dynamics simulations of Newton black films (NBFs), ultra thin films of aqueous solutions stabilized with two monolayers of ionic surfactants, sodium dodecyl sulfate. We show that at low water content conditions and areas per surfactant corresponding to experimental estimates in NBFs, homogeneous films undergo an adhesion "transition," which results in a very thin adhesive film coexisting with a thicker film. We identify the adhesive film with the equilibrium structure of the Newton black film. We provide here a direct microscopic view of the formation of these important structures, which have been observed in experimental studies of emulsions and foams. We also report a detailed investigation of the structural properties and interfacial fluctuation spectrum of the adhesive film. Our analysis relies on the definition of an "intrinsic surface," which is used to remove the averaging effect that the capillary waves have on the film properties.  相似文献   

5.
We used molecular dynamics (MD) simulations to investigate the structures and properties of Newton black films (NBF) for several surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (C16TAB), and surfactin using film thicknesses up to 10 nm. By calculating the interface formation energy for various packing conditions on the surface pressure-area isotherm, we found that the most probable surface concentration is approximately 42 A(2)/molecule for SDS and C16TAB and approximately 170 A(2)/molecule for surfactin. We then used this most probable concentration of each surfactant to simulate NBF with various film thicknesses. From analyzing the disjoining pressure-film thickness isotherms with the density profiles and the solvation coordination number, we found that the increase of the disjoining pressure during the film thinning was coupled with the change in inner structure of the NBF (i.e., density profile and the solvation of ionic entities). In the range of film thicknesses less than approximately 30 A, the disjoining pressures for the SDS and C16TAB were found to be larger than that of the surfactin. We predicted the Gibbs elasticity (175 dyn/cm for surfactin; 109 dyn/cm for C16TAB; 38 dyn/cm for SDS) required to assess the stability of NBF against surface concentration fluctuations, and the shear modulus (6.5 GPa for the surfactin; 6.1 GPa for the C16TAB; 3.5 GPa for the SDS) and the yield stress (approximately 0.8 GPa for surfactin; approximately 0.8 GPa for C16TAB; approximately 0.4 GPa for the SDS) to assess the mechanical stability against the externally imposed mechanical perturbation.  相似文献   

6.
The interaction parameters of Newton black soap films stabilized by NaDS, as derived from contact angle experiments, have been interpretated in terms of the structure and the interaction forces in the films. From the film thickness and the difference between the surface excess of the salt in the film and at the bulk surface it is concluded that (a) the diffuse double-layer overlap in the film is practically complete; (b) the film only contains absorbed DS ions and an equal amount of Na+ counterions, but no salt; and (c) the double layer at the bulk surface is still partly diffuse. A model for the structure of the NB films is proposed according to which the adsorbed DS ions with their counterions form a two-dimensional square lattice at each film surface. It is found that the interaction free energy of the NB films can be explained by taking into account the electrostatic interactions between the discrete ions in the two opposing surface lattices. The model of the NB film is qualitatively in agreement with the experimental results of other workers.  相似文献   

7.
The behavior of bilayer Newton Black Films (NBF) from aqueous dispersions of dimyristoylphosphatidylcholine (DMPC) have been studied in dynamic conditions. The dynamic contact angles θ and the gas permeability coefficient K have been measured using the diminishing bubble method. Two different solutions have been used: (i) DMPC vesicle suspension in water obtained through sonication and (ii) DMPC dissolved in ethanol plus water mixed solvent. Both solutions contain 0.1 M NaCl. The behavior of the dynamic contact angles is very different for NBF from the two types of solutions. In the case (i) the initially constant θ(t) sharply increase after approximately 2 h of the spontaneous diminishing of the bubble, they follow the gas pressure variation in the cell and depend on the film area. On the contrary in case (ii) the θ(t) values are almost constant during the spontaneous diminishing of the bubble as well as during the gas pressure variation in the cell and they do not depend on the film area. The gas permeability coefficient is larger in case (ii). The results are discussed in connection with the thickness and structure of the NBF from the two types of solutions, taking into account the solubility (or insolubility) and the hydration of the adsorption layers of the DMPC molecules.  相似文献   

8.
The interaction behavior of DNA with different types of hydroxylated cationic surfactants has been studied. Attention was directed to how the introduction of hydroxyl substituents at the headgroup of the cationic surfactants affects the compaction of DNA. The DNA-cationic surfactant interaction was investigated at different charge ratios by several methods like UV melting, ethidium bromide exclusion, and gel electrophoresis. Studies show that there is a discrete transition in the DNA chain from extended coils (free chain) to a compact form and that this transition does not depend substantially on the architecture of the headgroup. However, the accessibility of DNA to ethidium bromide is preserved to a significantly larger extent for the more hydrophilic surfactants. This was discussed in terms of surfactant packing. Observations are interpreted to reflect that the surfactants with more substituents have a larger headgroup and therefore form smaller micellar aggregates; these higher curvature aggregates lead to a less efficient, "patch-like" coverage of DNA. The more hydrophilic surfactants also presented a significantly lower cytotoxicity, which is important for biotechnological applications.  相似文献   

9.
Observation of Newton black film (NBF) in foam film is possible only with a certain probability W which depends on the concentration C of surfactant in the solution and on the time ta during which adsorption of surfactant at the solution/air interface has taken place. In the paper, the W(C,ta) dependence is derived and used to analyze the effect of ta on the critical surfactant concentration Cc below which NBF in foam film practically cannot be observed. An expression for the Cc(ta) function is obtained which reveals that Cc decreases substantially with increasing ta. This expression is found to describe well experimental Cc(ta) data for foam films obtained from aqueous solution of the therapeutic surfactant INFASURF.  相似文献   

10.
This study evaluated the oxygen permeability (O.P.) of starch-sorbitol-water films produced by casting. With a sorbitol content <20%, O.P. (0.15 10−16 cm2/s.Pa for 8.8% sorbitol) was lower than for other polymers classically used as oxygen barriers. With a sorbitol content >20%, O.P. (1.6 10−16 cm2/s.Pa for 24.9% sorbitol) was higher than for starch films without a plasticizer. These results were correlated with molecular mobility as determined by time-domain NMR. Low and high O.P. corresponded respectively to a decrease and an increase of molecular mobility relative to sorbitol content.  相似文献   

11.
The copolyester formed from 40 mol% p-hydroxybenzoic acid (H), 30 mol% isophthalic acid (I), and 30 mol% hydroquinone (Q), designated as HIQ-40, forms isotropic, amorphous films when appropriately cast from a solvent. Thermal annealing leads to a mesogenic texture and some level of crystallinity. It is shown that these ordering processes lead to dramatic reductions in gas permeability; the magnitude of the decrease increases with the size of the penetrant. The current results are consistent with previously reported sorption data for acetone in HIQ-40. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Polymer dispersed liquid crystal (PDLC) films (5CB/PMMA, 60/40) of different droplet size were prepared by a solvent-induced phase separation method under different N2 flow speeds. The effects of droplet size on the thermal transitions of the LC and various dielectric properties such as dielectric constant, conductance, dielectric loss, and the electric field induced in a droplet were examined. The configuration of the LC in the film with smaller droplets can be identified by comparing the dielectric constant of the film with the one predicted by Boettcher's mixture formula. In addition, the effect of droplet size on the electro-optical response of the PDLC film was investigated. Variations of the conductance and the dielectric constant of the film were analyzed under various AC frequencies, with the purpose of elucidating the polarization mechanism of the LC molecules in the droplet. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1373–1381, 1997  相似文献   

13.
This report describes the initial characterization of supramolecular morphology of diacetylenic aldonamides where the headgroup has been systematically varied from hexose, pentose, to tetrose. The electron-dense diacetylenes allow direct electron microscopic imaging of the assembly morphology without the aid of staining reagents. The electron micrographs reveal a dramatic change in supramolecular morphology upon the simple changing the headgroup from D-galactose to L-arabinose. Possible reasons for the change in morphology are discussed.  相似文献   

14.
It is generally admitted that actin filaments are anchored to a membrane by membranar actin-binding-proteins. However, we found that actin may also interact directly with membrane phospholipids. The actin-phospholipid complex has been investigated at the air-water interface using a film balance technique. In order to probe the effect of the phospholipid headgroup on the actin-phospholipid interaction, we focus mainly on phospholipids that have the same acyl chain length but different headgroups. For all the phospholipids, the apparent area per molecule (the total surface divided by the number of lipid molecules) increases after the injection of the protein into the subphase, which suggests an intercalation of actin between the phospholipid molecules. This effect seems to be more important for DMPE and DMPS than for DMPG, suggesting that the headgroup plays an important role in this intercalation. The critical surface pressure associated to the liquid expanded-liquid condensed (LE-LC) phospholipid transition increases with the concentration of G-actin and thus suggests that G-actin acts as an impurity, simply competing as a surfactant at the air-water interface. On the other hand, F-actin affects the LE to LC transition of phospholipids differently. In this case, the LE to LC transition is broader and F-actin slightly decreases the critical surface pressure, which suggests that electrostatic interactions are involved.  相似文献   

15.
The surface phase behavior in Langmuir monolayers of some oxyethylenated nonionic surfactants of the general formula C16En, with n = 1, 2, 3, and 4, at the air-water interface has been studied by film balance and Brewster angle microscopy (BAM) over a wide range of temperatures. The C16E4 monolayers cannot show any indicative features of phase transition because of strong dipolar as well as hydration-induced repulsive interactions between the bulky headgroups. On the other hand, the monolayers of C16E1, C16E2, and C16E3 show a sharp cusp point followed by a pronounced plateau region in their respective isotherms with subsequent formation of a variety of structures in the two-phase coexistence region between the liquid expanded (LE) and liquid condensed (LC) phases at different temperatures. As usually observed, the domains of C16E1, which bears only one ethylene oxide (EO) unit in the headgroup, are circular at lower temperatures while fractal at higher temperatures. On the other hand, those for C16E2 and C16E3 are initially found to be irregular structures, which attain increasingly compact shape with increasing temperature, and finally become circular when the subphase temperature is 26 and 15 degrees C for C16E2 and C16E3, respectively. It is concluded that a higher degree of dehydration around the headgroup region appreciably reduces the headgroup size, which imparts to the molecules an increase in hydrophobicity, thereby a closer molecular packing. Consequently, the line tension of the interface increases, showing compact structures at higher temperatures. Since C16E1 bears only one EO unit in its headgroup, the dehydration effect cannot appreciably raise its hydrophobicity to overcome the increases in thermal motion and chain flexibility of the molecules. Rather, increases in subphase temperature result in a decrease in the line tension of the interface, giving fractal structures at higher temperatures.  相似文献   

16.
Membrane fusion is an essential process guiding many important biological events, which most commonly requires the aid of proteins and peptides as fusogenic agents. Small drug induced fusion at low drug concentration is a rare event. Only three drugs, namely, meloxicam (Mx), piroxicam (Px), and tenoxicam (Tx), belonging to the oxicam group of non steroidal anti-inflammatory drugs (NSAIDs) have been shown by us to induce membrane fusion successfully at low drug concentration. A better elucidation of the mechanism and the effect of different parameters in modulating the fusion process will allow the use of these common drugs to induce and control membrane fusion in various biochemical processes. In this study, we monitor the effect of lipid headgroup size mismatch in the bilayer on oxicam NSAIDs induced membrane fusion, by introducing dimyristoylphosphatidylethanolamine (DMPE) in dimyristoylphosphatidylcholine (DMPC) small unilamellar vesicles (SUVs). Such headgroup mismatch affects various lipid parameters which includes inhibition of trans-bilayer motion, domain formation, decrease in curvature, etc. Changes in various lipidic parameters introduce defects in the membrane bilayer and thereby modulate membrane fusion. SUVs formed by DMPC with increasing DMPE content (10, 20, and 30 mol %) were used as simple model membranes. Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) were used to characterize the DMPC-DMPE mixed vesicles. Fluorescence assays were used to probe the time dependence of lipid mixing, content mixing, and leakage and also used to determine the partitioning of the drugs in the membrane bilayer. How the inhibition of trans-bilayer motion, heterogeneous distribution of lipids, decrease in vesicle curvature, etc., arising due to headgroup mismatch affect the fusion process has been isolated and identified here. Mx amplifies these effects maximally followed by Px and Tx. This has been correlated to the enhanced partitioning of the hydrophobic Mx compared to the more hydrophilic Px and Tx in the mixed bilayer.  相似文献   

17.
The effect of the lipid polar headgroup on melittin-phospholipid interaction was investigated by cryo-TEM, fluorescence spectroscopy, ellipsometry, circular dichroism, electrophoresis and photon correlation spectroscopy. In particular, focus was placed on the effect of the lipid polar headgroup on peptide adsorption to, and penetration into, the lipid bilayer, as well as on resulting colloidal stability effects for large unilamellar liposomes. The effect of phospholipid headgroup properties on melittin-bilayer interaction was addressed by comparing liposomes containing phosphatidylcholine, -acid, and -inositol at varying ionic strength. Increasing the bilayer negative charge leads to an increased liposome tolerance toward melittin which is due to an electrostatic arrest of melittin at the membrane interface. Balancing the electrostatic attraction between the melittin positive charges and the phospholipid negative charges through a hydration repulsion, caused by inositol, reduced this surface arrest and increased liposome susceptibility to the disruptive actions of melittin. Furthermore, melittin was demonstrated to induce liposome structural destabilization on a colloidal scale which coincided with leakage induction for both anionic and zwitterionic systems. The latter findings thus clearly show that coalescence, aggregation, and fragmentation contribute to melittin-induced liposome leakage, and that detailed molecular analyses of melittin pore formation are incomplete without considering also these colloidal aspects.  相似文献   

18.
The x-ray scattering by the three types of black foam films (common black, Newton black, and stratified black films) was experimentally studied. A special device in which flat black films with an area of ca. 2 cm2 can be produced was developed and x-ray diffraction patterns were obtained by a vertical diffractometer. The three types of films differ significantly in their x-ray reflections, which proves that they have different structure. For common black films, the comparison of observed and calculated intensities lead to a model, which corresponds to the three-layer model. The Newton black films exhibit diffraction trace with only one highly asymetric peak and there is, as of yet, no unambigous interpretation. The patterns of the stratified black films have several pronounced sharp peaks corresponding to the areas of different films with a given thickness.  相似文献   

19.
The film tension of bilayer Newton black films (NBF) from aqueous dispersions of dimyristoylphosphatidylcholine (DMPC) has been studied in dynamic conditions. The dynamic film tension values γ have been measured using the capillary method for direct measurement of the film tension. Two different solutions have been used: DMPC vesicle suspension in water obtained through sonication, denoted as ‘DMPC(Son)’ (the DMPC adsorption layers are insoluble monolayers) and DMPC dissolved in ethanol plus water mixed solvent, denoted as ‘DMPC(EthW)’ (the DMPC adsorption layers are soluble). Both solutions contain 0.1 M NaCl. The behavior of the dynamic film tension is different for NBF from the two types of solutions. In the case DMPC(Son) γ strongly depends on the film area, while in the case DMPC(EthW) this dependence is less pronounced but still exists. The dependence of the film tension on the film area in case DMPC(Son) is well described by the Frumkin equation modified for bilayer films. Reasonable values of the parameters of Frumkin equation are determined from its fit to the experimental data.  相似文献   

20.
The gas permeability of Newtonian black foam films, formed on the top of a small bubble at the solution surface, was studied experimentally. The aqueous solutions contained sodium dodecylsulphate with concentrations in the range 1.5×10–4 to 3×10–3 mol/dm3 and sodium chloride (constant concentration of 0.5 mol/dm3). A dependence of the gas permeability coefficient on the surfactant concentration was obtained. The experimental results are discussed on the basis of a theory assuming the presence of clusters of molecule vacancies (holes) in the bilayer foam film, their number and size depending on the surfactant concentration. The experimental results are in agreement with this film structure and confirm the existence of flow through both the hole-free bilayer film and the holes. It was found that the holes of three molecule vacancies make the main contribution to gas permeability at low surfactant concentration. The diffusion coefficients through the hole-free film and through the three-vacancy holes are calculated.Dedicated to Professor Dr. Armin Weiss on the occassion of his 60th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号