首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have been able to prepare a molecular complex between the poly(ethylene oxide) block of a poly(ethylene)-b-poly(ethylene-alt-propylene)-b-poly(ethylene oxide) triblock copolymer and p-nitrophenol (PNP). The composition of the copolymer employed was: 24% PE, 57% PEP and 19% PEO in weight percent. The pure copolymer exhibited a non-conventional thermal behavior since the PEO block displayed a fractionated crystallization process during cooling. The PEO block/PNP complex did not show any apparent crystallization during cooling, instead cold crystallization during heating was observed and an approximately 30°C increase in melting point as compared to the neat PEO block within the copolymer. This caused an overlap in the melting regions of the PE block and the PEO block/PNP complex. The self-nucleation of the PE-b-PEP-b-PEO/PNP complex is very different from that of the neat triblock copolymer. An increased capacity for self-nucleation of the PEO block was produced by the complexation with PNP and therefore the three self-nucleation domains were clearly encountered for both the PE block and for the PEO block/PNP complex. Self-nucleation was able to show that the two crystallizable blocks can be self-nucleated and annealed in an independent way, thereby ascertaining the presence of separate crystalline regions in the triblock copolymer. Through the use of PNP, both the crystallinity and the melting point of the PE-b-PEP-b-PEO block copolymer employed here can be substantially increased. Similar results were obtained by complexation of the same ABC triblock copolymer with resorcinol.  相似文献   

2.
A first attempt was made to produce novel ABC triblock terpolymers with three potentially crystallisable blocks: polyethylene (PE), poly(ethylene oxide) (PEO), and poly(ε-caprolactone) (PCL). Polybutadiene-b-poly(ethylene oxide) diblock copolymers were synthesized by living anionic polymerization. Then, a non-catalyzed thermal polymerization of ε-caprolactone from the hydroxyl end group of the PB-b-PEO diblock precursors was performed. Finally, hydrogenation by Wilkinson catalyst produced PE-b-PEO-b-PCL triblock terpolymers. Side reactions were detected that lead to the formation of undesired PCL-b-PEO diblock copolymers, however, these impurities were successfully removed by purification. A range of triblock terpolymers with PCL and PEO minor components were prepared. Topological restrictions on the PEO middle block prevented this block from crystallizing while the complex crystallization behavior of the PE and PCL blocks was documented by DSC and WAXS measurements.  相似文献   

3.
Di Hu 《European Polymer Journal》2009,45(12):3326-5707
Polystyrene-block-poly(ethylene oxide) alternating multiblock copolymer (PS-alt-PEO) was synthesized with the combination of atom transfer radical polymerization (ATRP) and Huisgen 1,3-dipolar cycloaddition (i.e., click chemistry). The copolymer has been characterized by means of Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The PS-alt-PEO alternating multiblock copolymer was incorporated into epoxy resin to investigate the behavior of reaction-induced microphase separation, which has been compared to the case of the thermosets containing PS-b-PEO diblock copolymer. The morphology of epoxy thermosets containing PS-alt-PEO alternating multiblock copolymer were investigated by means of atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS) and the nanostructures were detected in all the thermosetting blends investigated. In marked contrast to the case of the thermosets containing PS-b-PEO diblock copolymer, the thermosets containing PS-alt-PEO multiblock copolymer displayed disordered nanostructures, which have been interpreted on the basis of the restriction of the alternating multiblock topology of the block on the formation of the nanostructures via reaction-induced microphase separation.  相似文献   

4.
Two chemically dissimilar diblock copolymers, polybutadiene-b-poly(acrylic acid), PBd-b-PAA (Mw = 5.8–4 kg mol−1) and poly(styrene)-b-poly(ethylene oxide), PS-b-PEO (Mw = 9–5 kg mol−1) were blended in an effort to achieve morphologies typical of triblock copolymers. Blend compatibility was achieved by the hydrogen bond driven association of the PAA block of one diblock with the PEO block of the other. Small angle X-ray scattering was used to determine the morphologies of the compositions, which were further investigated using transmission electron microscopy and selective staining techniques. The crystallinity of the PEO block was determined by differential scanning calorimetry. The hydrogen bond interactions between PEO and PAA yielded a complex triblock lamellar morphology of the form PS-b-(PEO/PAA)-b-PBd-b-(PEO/PAA). This morphology was stable when crystallization of PEO was suppressed by sufficient interaction with PAA.  相似文献   

5.
Surface‐modified CdS nanoparticles selectively dispersed in hexagonally packed poly(ethylene oxide) (PEO) cylinders of poly(styrene‐b‐ethylene oxide) (PSEO) block copolymers were prepared. The photoluminescence and ultraviolet–visible characteristics of the presynthesized CdS nanoparticles in N,N‐dimethylformamide and in PEO domains of the PSEO block copolymers were determined. Because of strong interactions between the CdS nanoparticles and PEO chains, as shown by Fourier transform infrared spectroscopy, the incorporation of the CdS nanoparticles prevented the PEO cylinders from properly crystallizing; this was confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. The intercylinder distance between the swollen and reduced‐crystallinity CdS/PEO cylinders in turn increased, as confirmed by small‐angle X‐ray scattering and transmission electron microscopy. At a high CdS concentration (43 wt % or 8.3 vol % with respect to PEO), however, the hexagonally packed cylindrical nanostructure of the PSEO diblock copolymers was destroyed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1220–1229, 2005  相似文献   

6.
Summary: Polystyrene‐block‐poly(ethylene oxide) (SEO) block copolymer thin films, in which CdS clusters have been sequestered into the PEO domains of the SEO block copolymers, are found to induce the morphological transformation of PEO from cylinders to spheres, as shown by using atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This transformation is caused by the presence of hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO, as confirmed by nuclear magnetic resonance (NMR) studies.

Morphological transformation of PEO cylinders into CdS/PEO spheres by hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO.  相似文献   


7.
Thin films of PS-b-PEO block copolymers were utilized as structured reservoirs for localized nanoscale precipitation reactions. By consecutively immersing the film into solutions of thioacetamide and cadmium chloride, we were able to obtain a monolayer of cadmium sulfide nanostructures on top of the block copolymer film. AFM and grazing incidence small angle X-ray scattering revealed spherical nanostructures (d = 15 nm) corresponding to the dimensions given by the block copolymer film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1569–1573, 2010  相似文献   

8.
A polystyrene-[Ni(2+)]-poly(ethylene oxide) metallo-supramolecular block copolymer (PS-[Ni(2+)]-PEO), where -[ is a terpyridine, is used to create nanoporous thin films with free terpyridine ligands homogenously distributed on the pore walls. The PS-[Ni(2+)]-PEO block copolymer is synthesized by a two step assembly process, and is then self-assembled into a thin film in order to obtain PEO cylinders oriented perpendicularly to the film surface. The supramolecular junction is opened by exposing the film to an excess of a competing ligand, and the free PEO block is then rinsed away by a selective solvent. The presence of the terpyridines on the pore walls is evidenced by fluorescence spectroscopy after formation of a fluorescent complex with an europium salt.  相似文献   

9.
Herein, we present a simple method for producing nanoporous templates with a high degree of lateral ordering by self‐assembly of block copolymers. A key feature of this approach is control of the orientation of polymeric microdomains through the use of hydrophilic additives as structure directing agents. Incorporation of hydrophilic poly(ethylene oxide) (PEO) moieties into poly(styrene‐b‐methyl methacrylate) (PSt‐b‐PMMA) diblock copolymers gives vertical alignment of PMMA cylinders on the substrate after solvent annealing. Because of the miscibility between PEO and PMMA, PEO additives were selectively positioned within PMMA microdomains and by controlling the processing conditions, it was found that ordering of PSt‐b‐PMMA diblock copolymers could be achieved. The perpendicular orientation of PMMA cylinders was achieved by increasing the molecular size of the PEO additives leading to an increased hydrophilicity of the PMMA domains and consequently to control the orientation of microdomains in PSt‐b‐PMMA block copolymer thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8041–8048, 2008  相似文献   

10.
Anionic copolymerization and Williamson reaction of PS-co-PD (d-isoprene (I) or butadiene (B)) prepolymers (bearing hydroxyl or benzyl bromide end groups) and ethylene oxide or mono-methyl poly(ethylene glycol) (PEGs) were used to prepare a series of PS-co-PD-b-PEO amphiphilic copolymers. Investigations on the association and self-assembly of copolymers in dilute organic and in mixed organic/water solutions have been carried out both by light scattering and microscopic measurements. Nanosized and microsized species have been observed. Their shape depends on the hydrophobic/hydrophilic blocks ratio as well as on the solvent composition. Attempts on stabilizing the morphology of the aggregates/micelles have been made by UV-induced cross-linking of diene entities. It has been found that in some experiments, the stabilization proceeds throughout morphological rearrangement determined by the solvent nature and by the cross-linking protocol.  相似文献   

11.
The stimuli-responsive copolymers with poly(ethylene oxide) (PEO) as side chain were prepared by free-radical copolymerization of methacrylamide end-capped PEO macromonomer and 4-vinylpyridine (4VP). Phase transition behavior of these copolymers of poly(4-vinylpyridine)-g-poly(ethylene oxide) (P4VP-g-PEO) was investigated as a function of polymer concentration, temperature, pH and ionic strength by monitoring the turbidity of the polymer solutions. The copolymers displayed sharp response to temperature and pH. The LCST of P4VP-g-PEO copolymer increased with the increase of PEO content and decreased with increasing pH due to the deprotonation of the pyridine ring, indicating well-tunable LCST. In addition, the LCST of P4VP-g-PEO9 presented a unique phase transition behavior with varying salt concentration, showing a minimum with 1 M NaCl solution at pH 6.0.  相似文献   

12.
Blends of polystyrene (PS) and poly(styrene-b-ethylene oxide) (PS-b-PEO) were cast from a ternary solvent mixture containing 85% toluene, 10% tetrahydrofuran, and 5% methanol under conditions that favor crystallization of the PEO phase. Electric fields (2–14 kV/cm) were applied during casting to explore the possibility of morphology control by the field. It was observed that films cast in the absence of an electric field, in the temperature range of 0–25°C, from solutions initially cooled to 0°C were translucent. Their transmission electron micrographs exhibited thread-like, fibrillar structures. Micrographs of films cast in dc fields of 2–14 kV/cm at 16.3 ± 0.4°C also showed fibrillar structures, with the fibrils in the presence of fields greater than 8 kV/cm being substantially oriented in the field direction. We suggest that the morphologies developed under these conditions result from crystallization from preexisting crystal nuclei in the cooled solutions with the fibrillar crystals being oriented by the electric field. This method provides a possible way of processing anisotropic polymer blends. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Novel block copolymers, poly(3‐hexylthiophene)‐b‐poly(ethylene oxide) (P3HT‐b‐PEO) were synthesized via Suzuki coupling reaction of P3HT and PEO homopolymers. The copolymers were characterized by NMR, gel permeation chromatography, differential scanning calorimeter, and UV–vis measurements. A series of devices based on the block copolymers with a fullerene derivative were evaluated after thermal or solvent annealing. The device using P3HT‐b‐PEO showed higher efficiency than using P3HT blend after thermal annealing. Phase‐separated structures in the thin films of block copolymer blends were investigated by atomic force microscopy to clarify the relationship between morphologies constructed by annealing and the device performance. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Series of PTT-b-PEO copolymers with different composition of rigid PTT and PEO flexible segments were synthesized from dimethyl terephthalate (DMT), 1,3-propanediol (PDO), poly(ethylene glycol) (PEG, Mn = 1000 g/mol) in a two stage process involving transesterification and polycondensation in the melt. The weight fraction of flexible segments was varied between 20 and 70 wt%. The molecular structure of synthesized copolymers was confirmed by 1H NMR and 13C NMR spectroscopy. The superstructure of these polymers was characterized by DSC, DMTA, WAXS and SAXS measurements. It was observed that domains of three types can exist in PTT-b-PEOT copolymers: semi-crystalline PTT, amorphous PEO rich phase (amorphous PEO/PTT blended phase) and semi-crystalline PEO phase. Semi-crystalline PEO phase was observed only at temperature below 0 °C for sample containing the highest concentration of PEO segment. The phase structure, thermal and mechanical properties are effected by copolymer composition. The copolymers containing 30÷70 wt% of PEO segment posses good thermoplastic elastomers properties with high thermal stability. Hardness and tensile strength rise with increase of PTT content in copolymers.  相似文献   

15.
Well defined amphiphilic block copolymers containing a polydimethyl siloxane (PDMS) and a poly(ethylene oxide) block (PEO) were synthesized by ring opening polymerization of hexamethylcyclotrisiloxane, followed by chain extension with a PEO block of a defined length. These amphiphilic molecules were used as templates in a solvent-evaporation driven synthesis approach to self-assembled mesostructured silica films. Thin films and powders were prepared, and the resulting material was characterized by X-ray diffraction, transmission electron microscopy, and 29Si and 13C solid state NMR. The behavior of the PEO-b-PDMS block copolymer during heat treatment up to 600°C was followed in detail by solid state NMR.  相似文献   

16.
A series of star‐block poly(L ‐lactide)‐b‐poly(ethylene oxide) (SPLLA‐b‐PEO) copolymers were synthesized by ring‐opening polymerization (ROP) and DCC chemistry. The inclusion complexes of SPLLA‐b‐PEO copolymers and α‐cyclodextrin (α‐CD) were prepared with two different methods. FTIR, 1H NMR, WAXD, DSC, and TGA indicate that α‐CD only can be threaded onto PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐a, α‐CD‐SPLLA‐b‐PEO2K‐a, and α‐CD‐SPLLA‐b‐PEO5K‐a formed without heating and ultrasonication, and can be threaded onto both PLLA and PEO blocks in inclusion complexes of α‐CD‐SPLLA‐b‐PEO1.1K‐b, α‐CD‐SPLLA‐b‐PEO2K‐b, and α‐CD‐SPLLA‐b‐PEO5K‐b formed with heating and ultrasonication. Namely, α‐CDs can be threaded onto PEO blocks and the flanking bulky PLLA blocks of star‐block copolymers to form stable polyseudorotaxanes with heating method and ultrasonication to conquer the activation energy barrier of the inclusion complexation between bulky PLLA and α‐CD and the effect of the steric hindrance of star‐block copolymers. With the alteration of preparing methods, the inclusion complexes of α‐CD with the outer PEO block or PEO and PLLA blocks were obtained successfully. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2754–2762, 2009  相似文献   

17.
Gold nanoparticles by using the mixture of polystyrene-block-poly(2-vinyl pyridine)/poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PS-b-P2VP/P2VP-b-PEO) block copolymers as encapsulating agent was prepared. The prepared nanoparticles were characterized by transmission electron microscopy, UV-Vis spectroscopy and contact angle. It is demonstrated that the obtained gold nanoparticles are covered with mixed block copolymer shells. The hydrophilic property of the nanoparticles can be varied by the change of the dispersion medium. The obtained gold nanoparticles with mixed block copolymer shells are stable in organic solvents (such as tetrahydrofuran and toluene) and water.  相似文献   

18.
Summary: A set of melt miscible Poly(2-vinyl pyridine)-b-Poly(ethylene oxide) (P2VP-b-PEO) block copolymers of different compositions were studied. Transmission electron microscopy shows phase separation in the materials during the crystallization process of the PEO block as crystalline lamellae are observed for all compositions evaluated. The isothermal crystallization kinetics of PEO is progressively retarded as the P2VP content in the copolymer increases, since P2VP hinders molecular mobility in the miscible amorphous phase. Polarized light optical microscopy demonstrated that the glassy P2VP block has a negative effect on the secondary nucleation of the PEO. Finally, physical ageing experiments performed in the glassy state of the amorphous mixed phase, at different ageing times, demonstrated that a nucleating effect can be induced in the glassy state as a consequence of the reorganization of the amorphous regions. This nucleating effect significantly alters the cold crystallization rate upon subsequent heating above the glass transition temperature.  相似文献   

19.
The synthesis of the poly(para-phenyleneethynylene)-block-poly(ethylene oxide) block copolymer (PPE-b-PEO) ( 1 ) via condensation of endfunctionalized poly(para-phenyleneethynylene) (PPE) ( 5 ) and poly(ethylene oxide) monomethyl ether (PEO) is reported. This is achieved by the initial synthesis of a PPE homopolymer with quantitative terminal functionalization, as proven by 1H NMR and field desorption mass spectrometry (FD-MS). Reaction of the latter with PEO affords the block copolymer 1 , which was characterized by 1H NMR spectroscopy, FD-MS and gel permeation chromatography (GPC). Furthermore it is shown that matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a suitable method to investigate PPE-b-PEO with respect to molecular weights and copolymer composition.  相似文献   

20.
A model graft copolymer in which position of graft points was set to the center of a backbone molecule was prepared via anionic living polymerization. Polystyrene-block-poly(p-tert-butoxystyrene)-block-polystyrene (PSt-b-PBSt-b-PSt) was prepared by three-stage sequential addition. The tert-butyl group was removed from PBSt by hydrogen bromide to yield PSt-b-PHSt-b-PSt, having a poly(p-hydroxystyrene) (PHSt) block. The hydroxyl group of PHSt was reacted with dimeric potassium dianions of 1, 1-diphenylethylene (DPE-K) or cumyl potassium (cumyl K) to yield the corresponding macromolecular initiators of PSt-b-PHStK+-b-PSt containing the potassium alkoxide ion of PHSt. The newly formed alkoxide groups and remaining initiators of DPE-K or cumyl K are capable of initiating the additionally introduced ethylene oxide (EO). Thus, two block–graft copolymers of polystyrene-block-[poly(p-hydroxystyrene)-graft-poly(ethylene oxide)]-block-polystyrene (PSt-b-(PHSt-g-PEO)-b-PSt) were prepared by a “grafting from” process (backbone initiation). A PSt-b-PHSt-b-PSt backbone (Mn = 1.75 × 105 by osmometry and Mw/Mn = 1.08 by GPC), and two PSt-b-(PHSt-g-PEO)-b-PSt block–graft copolymers (Mn = 2.45 × 105 by osmometry and Mw/Mn < 1.10 by GPC) had narrow molecular weight distributions. A relationship between nonquantitative metallation and spacing of the graft points on a backbone molecule was discussed in detail. Two benzene-cast films formed clear microphase-separated structures of lamellar structure. The dependence of composition on the morphology of the block–graft copolymers was found to differ from that of common block copolymers. A degree of crystallinity of PEO segment and lamellar thickness of PEO phase serving as graft molecule were also found to differ from those of homo PEO and/or PEO segment in common block copolymer. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3021–3034, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号