首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extended solvent-contact model was applied to the blind prediction of the hydration free energies of 47 organic molecules included in the SAMPL4 data set. To obtain a suitable prediction tool, we constructed a hydration free energy function involving three kinds of atomic parameters. With respect to total 34 atom types introduced to describe all SAMPL4 molecules, 102 atomic parameters were defined and optimized with a standard genetic algorithm in such a way to minimize the difference between the experimental hydration free energies and those calculated with the hydration free energy function. In this parameterization, we used a training set comprising 77 organic molecules with varying sizes and shapes. The estimated hydration free energies for the SAMPL4 molecules compared reasonably well with the experimental results with the associated squared correlation coefficient and root mean square deviation of 0.89 and 1.46 kcal/mol, respectively. Based on the comparative analysis of experimental and computational hydration free energies of the SAMPL4 molecules, the methods for further improvement of the present hydration model are suggested.  相似文献   

2.
The COSMO-RS method has been used for the prediction of free energies of hydration on a dataset of 47 complex multifunctional compounds considered in the SAMPL4 challenge. Straight application of the COSMOtherm software with the parameterization C21_0108 yields a predictive accuracy of 1.46 kcal/mol root mean square error overall and 1.18 kcal/mol if a single dominant outlier is removed.  相似文献   

3.
Several submissions for the SAMPL4 hydration free energy set were calculated using OpenEye tools, including many that were among the top performing submissions. All of our best submissions used AM1BCC charges and Poisson–Boltzmann solvation. Three submissions used a single conformer for calculating the hydration free energy and all performed very well with mean unsigned errors ranging from 0.94 to 1.08 kcal/mol. These calculations were very fast, only requiring 0.5–2.0 s per molecule. We observed that our two single-conformer methodologies have different types of failure cases and that these differences could be exploited for determining when the methods are likely to have substantial errors.  相似文献   

4.
All-atom molecular dynamics computer simulations were used to blindly predict the hydration free energies of a range of chloro-organic compounds as part of the SAMPL3 challenge. All compounds were parameterized within the framework of the OPLS-AA force field, using an established protocol to compute the absolute hydration free energy via a windowed free energy perturbation approach and thermodynamic integration. Three different approaches to deriving partial charge parameters were pursued: (1) using existing OPLS-AA atom types and charges with minor adjustments of partial charges on equivalent connecting atoms; (2) calculation of quantum mechanical charges via geometry optimization, followed by electrostatic potential (ESP) fitting, using Jaguar at the LMP2/cc-pVTZ(-F) level; and (3) via geometry optimization and CHelpG charges (Gaussian03 at the HF/6-31G* level), followed by two-stage RESP fitting. Protocol 3 generated the most accurate predictions with a root mean square (RMS) error of 1.2 kcal mol(-1) for the entire data set. It was found that the deficiency of the standard OPLS-AA parameters, protocol 1 (RMS error 2.4 kcal mol(-1) overall), was mostly due to compounds with more than three chlorine substituents on an aromatic ring. For this latter subset, the RMS errors were 1.4 kcal mol(-1) (protocol 3) and 4.3 kcal mol(-1) (protocol 1), respectively. We propose new OPLS-AA atom types for aromatic carbon and chlorine atoms in rings with ≥4 Cl-substituents that perform better than the best QM-based approach, resulting in an RMS error of 1.2 kcal mol(-1) for these difficult compounds.  相似文献   

5.
Accurately predicting receptor–ligand binding free energies is one of the holy grails of computational chemistry with many applications in chemistry and biology. Many successes have been reported, but issues relating to sampling and force field accuracy remain significant issues affecting our ability to reliably calculate binding free energies. In order to explore these issues in more detail we have examined a series of small host–guest complexes from the SAMPL6 blind challenge, namely octa-acids (OAs)–guest complexes and Curcurbit[8]uril (CB8)–guest complexes. Specifically, potential of mean force studies using umbrella sampling combined with the weighted histogram method were carried out on both systems with both known and unknown binding affinities. We find that using standard force fields and straightforward simulation protocols we are able to obtain satisfactory results, but that simply scaling our results allows us to significantly improve our predictive ability for the unknown test sets: the overall RMSD of the binding free energy versus experiment is reduced from 5.59 to 2.36 kcal/mol; for the CB8 test system, the RMSD goes from 8.04 to 3.51 kcal/mol, while for the OAs test system, the RSMD goes from 2.89 to 0.95 kcal/mol. The scaling approach was inspired by studies on structurally related known benchmark sets: by simply scaling, the RMSD was reduced from 6.23 to 1.19 kcal/mol and from 2.96 to 0.62 kcal/mol for the CB8 benchmark system and the OA benchmark system, respectively. We find this scaling procedure to correct absolute binding affinities to be highly effective especially when working across a “congeneric” series with similar charge states. It is less successful when applied to mixed ligands with varied charges and chemical characteristics, but improvement is still realized in the present case. This approach suggests that there are large systematic errors in absolute binding free energy calculations that can be straightforwardly accounted for using a scaling procedure. Random errors are still an issue, but near chemical accuracy can be obtained using the present strategy in select cases.  相似文献   

6.
The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.  相似文献   

7.
In the recent SAMPL5 challenge, participants submitted predictions for cyclohexane/water distribution coefficients for a set of 53 small molecules. Distribution coefficients (log D) replace the hydration free energies that were a central part of the past five SAMPL challenges. A wide variety of computational methods were represented by the 76 submissions from 18 participating groups. Here, we analyze submissions by a variety of error metrics and provide details for a number of reference calculations we performed. As in the SAMPL4 challenge, we assessed the ability of participants to evaluate not just their statistical uncertainty, but their model uncertainty—how well they can predict the magnitude of their model or force field error for specific predictions. Unfortunately, this remains an area where prediction and analysis need improvement. In SAMPL4 the top performing submissions achieved a root-mean-squared error (RMSE) around 1.5 kcal/mol. If we anticipate accuracy in log D predictions to be similar to the hydration free energy predictions in SAMPL4, the expected error here would be around 1.54 log units. Only a few submissions had an RMSE below 2.5 log units in their predicted log D values. However, distribution coefficients introduced complexities not present in past SAMPL challenges, including tautomer enumeration, that are likely to be important in predicting biomolecular properties of interest to drug discovery, therefore some decrease in accuracy would be expected. Overall, the SAMPL5 distribution coefficient challenge provided great insight into the importance of modeling a variety of physical effects. We believe these types of measurements will be a promising source of data for future blind challenges, especially in view of the relatively straightforward nature of the experiments and the level of insight provided.  相似文献   

8.
This paper reports the results of our attempt to predict hydration free energies on the SAMPL2 blind challenge dataset. We mostly examine the effects of the solute electrostatic component on the accuracy of the predictions. The usefulness of electronic polarization in predicting hydration free energies is assessed by comparing the Electronic Polarization from Internal Continuum model and the self consistent reaction field IEF-PCM to standard non-polarizable charge models such as RESP and AM1-BCC. We also determine an optimal restraint weight for Dielectric-RESP atomic charges fitting. Statistical analysis of the results could not distinguish the methods from one another. The smallest average unsigned error obtained is 1.9 ± 0.6 kcal/mol (95% confidence level). A class of outliers led us to investigate the importance of the solute–solvent instantaneous induction energy, a missing term in PB continuum models. We estimated values between −1.5 and −6 kcal/mol for a series of halo-benzenes which can explain why some predicted hydration energies of non-polar molecules significantly disagreed with experiment.  相似文献   

9.
Molecular dynamics simulations in explicit solvent were applied to predict the hydration free energies for 23 small organic molecules in blind SAMPL2 test. We found good agreement with experimental results, with an RMS error of 2.82 kcal/mol over the whole set and 1.86 kcal/mol over all the molecules except several hydroxyl-rich compounds where we find evidence for a systematic error in the force field. We tested two different solvent models, TIP3P and TIP4P-Ew, and obtained very similar hydration free energies for these two models; the RMS difference was 0.64 kcal/mol. We found that preferred conformation of the carboxylic acids in water differs from that in vacuum. Surprisingly, this conformational change is not adequately sampled on simulation timescales, so we apply an umbrella sampling technique to include free energies associated with the conformational change. Overall, the results of this test reveal that the force field parameters for some groups of molecules (such as hydroxyl-rich compounds) still need to be improved, but for most compounds, accuracy was consistent with that seen in our previous tests.  相似文献   

10.
To test and validate the Automated force field Topology Builder and Repository (ATB; http://compbio.biosci.uq.edu.au/atb/) the hydration free enthalpies for a set of 214 drug-like molecules, including 47 molecules that form part of the SAMPL4 challenge have been estimated using thermodynamic integration and compared to experiment. The calculations were performed using a fully automated protocol that incorporated a dynamic analysis of the convergence and integration error in the selection of intermediate points. The system has been designed and implemented such that hydration free enthalpies can be obtained without manual intervention following the submission of a molecule to the ATB. The overall average unsigned error (AUE) using ATB 2.0 topologies for the complete set of 214 molecules was 6.7 kJ/mol and for molecules within the SAMPL4 7.5 kJ/mol. The root mean square error (RMSE) was 9.5 and 10.0 kJ/mol respectively. However, for molecules containing functional groups that form part of the main GROMOS force field the AUE was 3.4 kJ/mol and the RMSE was 4.0 kJ/mol. This suggests it will be possible to further refine the parameters provided by the ATB based on hydration free enthalpies.  相似文献   

11.
Relative free energy calculations based on molecular dynamics simulations are combined with available experimental binding free energies to predict unknown binding affinities of acyclic Cucurbituril complexes in the blind SAMPL3 competition. The predictions yield root mean square errors between 2.6 and 3.2 kcal/mol for seven host-guest systems. Those deviations are comparable to results for solvation free energies of small organic molecules. However, the standard deviations found in our simulations range from 0.4 to 2.4 kcal/mol, which indicates the need for better sampling. Three different approaches are compared. Bennett's Acceptance Ratio Method and thermodynamic integration based on the trapezoidal rule with 12 λ-points exhibit a root mean square error of 2.6 kcal/mol, while thermodynamic integration with Simpson's rule and 11 λ-points leads to a root mean square error of 3.2 kcal/mol. In terms of absolute median errors, Bennett's Acceptance Ratio Method performs better than thermodynamic integration with the trapezoidal rule (1.7 vs. 2.9 kcal/mol). Simulations of the deprotonated forms of the guest molecules exhibit a poorer correspondence to experimental results with a root mean square error of 5.2 kcal/mol. In addition, a decrease of the buffer concentration by approximately 20 mM in the simulations raises the root mean square error to 3.8 kcal/mol.  相似文献   

12.
13.
Accurately predicting binding affinities between ligands and macromolecules has been a much sought-after goal. A tremendous amount of resources can be saved in the pharmaceutical industry through accurate binding-affinity prediction and hence correct decision-making for the drug discovery processes. Owing to the structural complexity of macromolecules, one of the issues in binding affinity prediction using molecular dynamics is the adequate sampling of the conformational space. Recently, the funnel metadynamics method (Limongelli et al. in Proc Natl Acad Sci USA 110:6358, 2013) was developed to enhance the sampling of the ligand at the binding site as well as in the solvated state, and offer the possibility to predict the absolute binding free energy. We apply funnel metadynamics to predict host–guest binding affinities for the cucurbit[7]uril host as part of the SAMPL4 blind challenge. Using total simulation times of 300–400 ns per ligand, we show that the errors due to inadequate sampling are below 1 kcal/mol. However, despite the large investment in terms of computational time, the results compared to experiment are not better than a random guess. As we obtain differences of up to 11 kcal/mol when switching between two commonly used force fields (with automatically generated parameters), we strongly believe that in the pursuit of accurate binding free energies a more careful force-field parametrization is needed to address this type of system.  相似文献   

14.
An implicit solvent model described by a non-simple dielectric medium is used for the prediction of hydration free energies on the dataset of 47 molecules in the SAMPL4 challenge. The solute is represented by a minimal parameter set model based on a new all atom force-field, named the liquid simulation force-field. The importance of a first solvation shell correction to the hydration free energy prediction is discussed and two different approaches are introduced to address it: either with an empirical correction to a few functional groups (alcohol, ether, ester, amines and aromatic nitrogen), or an ab initio correction based on the formation of a solute/explicit water complex. Both approaches give equally good predictions with an average unsigned error <1 kcal/mol. Chemical accuracy is obtained.  相似文献   

15.
The absolute binding free energies and binding enthalpies of twelve host–guest systems in the SAMPL5 blind challenge were computed using our attach-pull-release (APR) approach. This method has previously shown good correlations between experimental and calculated binding data in retrospective studies of cucurbit[7]uril (CB7) and β-cyclodextrin (βCD) systems. In the present work, the computed binding free energies for host octa acid (OA or OAH) and tetra-endo-methyl octa-acid (TEMOA or OAMe) with guests are in good agreement with prospective experimental data, with a coefficient of determination (R2) of 0.8 and root-mean-squared error of 1.7 kcal/mol using the TIP3P water model. The binding enthalpy calculations achieve moderate correlations, with R2 of 0.5 and RMSE of 2.5 kcal/mol, for TIP3P water. Calculations using the newly developed OPC water model also show good performance. Furthermore, the present calculations semi-quantitatively capture the experimental trend of enthalpy-entropy compensation observed, and successfully predict guests with the strongest and weakest binding affinity. The most populated binding poses of all twelve systems, based on clustering analysis of 750 ns molecular dynamics (MD) trajectories, were extracted and analyzed. Computational methods using MD simulations and explicit solvent models in a rigorous statistical thermodynamic framework, like APR, can generate reasonable predictions of binding thermodynamics. Especially with continuing improvement in simulation force fields, such methods hold the promise of making substantial contributions to hit identification and lead optimization in the drug discovery process.  相似文献   

16.
We report the performance of a classical density functional theory (CDFT) in the competition for the solvation free-energy category of the SAMPL4 blind prediction event. The theoretical calculations were carried out with the TIP3P water model and different combinations of solute configurations and molecular force fields. In comparison with the experimental data, the blind test yields an average unsigned error of 2.38 kcal/mol and the root mean square deviation of 2.99 kcal/mol. Whereas these numbers are significantly larger than the best results from explicit-solvent MD simulations, we find that the theoretical performance is sensitive to both the molecular force fields and solute configurations and that a comparable level of accuracy can be achieved by a judicious selection of the solute configurations and the force-field parameters. Most importantly, CDFT reduces the computational cost of MD simulation by almost 3 orders of magnitude, making it very attractive for large-scale hydration free-energy calculations (e.g., screening the aqueous solubility of drug-like molecules).  相似文献   

17.
Absolute free energies of hydration have been computed for 13 diverse organic molecules using partial charges derived from ab initio 6-31G* wave functions. Both Mulliken charges and charges fit to the electrostatic potential surface (EPS) were considered in conjunction with OPLS Lennard–Jones parameters for the organic molecules and the TIP4P model of water. Monte Carlo simulations with statistical perturbation theory yielded relative free energies of hydration. These were converted to absolute quantities through perturbations to reference molecules for which absolute free energies of hydration had been obtained previously in TIP4P water. The average errors in the computed absolute free energies of hydration are 1.1 kcal/mol for the 6-31G* EPS charges and 4.0 kcal/mol for the Mulliken charges. For the EPS charges, the largest individual errors are under 2 kcal/mol except for acetamide, in which case the error is 3.7 kcal/mol. The hydrogen bonding between the organic solutes and water has also been characterized. © John Wiley & Sons, Inc.  相似文献   

18.
Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R(2)=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R(2)=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level.  相似文献   

19.
Modern classical force fields have been traditionally parameterized by attempting to maximize agreement to any number of experimental and/or quantum mechanical target properties. As these force fields are pushed towards obtaining quantitative estimates of often subtle energetic differences, stringent and consistent parameterization criteria, particularly in regard to charge distributions, are required to ensure that systematic errors cancel, that parameters are transferable between molecules, and that performance does not significantly deteriorate when using more approximate methods, such as with continuum solvent models. Relative free energies of hydration are presented here for 40 mono- and disubstituted benzenes modeled with the OPLS-AA force field; heats of vaporization and pure liquid densities at standard conditions are presented when experimental data is available. Overall agreement between OPLS-AA and experiment is remarkable (average error = 0.5 kcal/mol for DeltaDeltaG(hydration), 1.0 kcal/mol for DeltaH(vap) (0), 0.02 g/mL for densities), yet several functional groups are identified as having consistent and correctable errors (alkyl-, nitro-, and thiobenzenes). Relative free energies of hydration obtained with rigorous free energy perturbations using explicit solvent are also compared with energies from minimizations using a generalized Born model (GB). There is high correlation between these estimates (R = 0.99), and as demonstrated here, reparameterization of the aforementioned groups can be guided with rapid GB calculations.  相似文献   

20.
As part of the SAMPL6 host–guest blind challenge, the AMOEBA force field was applied to calculate the absolute binding free energy for a cucurbit[8]uril host complexed with 14 diverse guests, ranging from small, rigid structures to drug molecules. The AMOEBA results from the initial submission prompted an investigation into aspects of the methodology and parameterization employed. Lessons learned from the blind challenge include: a double annihilation scheme (electrostatics and van der Waals) is needed to obtain proper sampling of guest conformations, annihilation of key torsion parameters of the guest are recommended for flexible guests, and a more thorough analysis of torsion parameters is warranted. When put in to practice with the AMOEBA model, the lessons learned improved the MUE from 2.63 to 1.20 kcal/mol and the RMSE from 3.62 to 1.68 kcal/mol, respectively. Overall, the AMOEBA protocol for determining absolute binding free energies benefitted from participation in the SAMPL6 host–guest blind challenge and the results suggest the implementation of the methodology in future host–guest calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号