首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 A novel fluid mixing device, described elsewhere, has been shown to have a dramatic effect on the combustion characteristics of a fuel jet. The main features of the flow are the deflection of the jet between 30° and 60° from the nozzle axis and its precession about that axis. Many of the factors governing the nozzle instabilities which drive the mixing in the external field are imprecisely defined. It is the aim of the present paper to examine, in isolation from the nozzle instabilities, the influence of precession on a deflected jet as it proceeds downstream from the nozzle exit. The fluid dynamically driven phenomena within the nozzle which cause the precession are in the present investigation replaced by a mechanical rotation of a nozzle from which is emerging a jet which is orientated at an angle from the nozzle axis. By this means the effect of precession on the deflected jet can be investigated independently of the phenomena which cause the precession. The experimental data reported here has been obtained from measurements made using a miniature, rapid response four-hole “Cobra” pitot probe in the field of the precessing jet. Phase-averaged three dimensional velocity components identify the large scale motions and overall flow patterns. The measured Reynolds stresses complement the velocity data and are found to be compatible with the higher entrainment rates of the jet found in earlier investigations. Received: 8 November 1995 / Accepted: 27 September 1996  相似文献   

2.
The dependence of the flow coefficient of a gas jet ejected from an orifice/nozzle into a subsonic/transonic cross-flow on the flow and the jet Mach numbers, the off-design ratio, the nozzle inclination angle, β, and other determining parameters is considered. The physical nozzle flow pattern is constructed on the basis of experimental data obtained for 0.3< M<1.75 and β=60°, 90°, and 120°. The results of measuring the pressure upstream and downstream of the orifice and on the windward and leeward orifice generators are presented. It is shown that the flow rate coefficient of a jet ejected into a cross-flow may exceed that of a similar jet outflowing into a flooded space. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 65–70, May–June, 1998.  相似文献   

3.
 The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670–13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region. Received: 24 November 1998/Accepted: 24 August 1999  相似文献   

4.
A method of theoretical investigation of the flow field in a two-dimensional (plane-parallel or axisymmetric) overexpanded jet of an ideal perfect gas in the vicinity of the nozzle lip is described. The changes in curvature of the shock wave emanating from the lip, as well as the shock-wave intensity and flow parameters behind the shock are analyzed as functions of the Mach number, pressure ratio in the plane jet, and ratio of specific heats of the gas. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 72–83, May–June, 2006.  相似文献   

5.
A turbulent plane offset jet with small offset ratio   总被引:5,自引:0,他引:5  
 Mean velocities and turbulence characteristics of a turbulent plane offset jet with a small offset ratio of 2.125 have been studied using laser Doppler anemometry (LDA). Static pressure measurements highlight the importance of side plates in enhancing two-dimensionality of the jet. The spatial distributions of turbulence intensities and Reynolds shear stress show a high turbulence recirculating flow region close to the nozzle plate between the jet and the offset plate. The LDA results have been used to examine the capability of three different turbulence models (i.e. k–ɛ, RNG and Reynolds stress) in predicting the velocity field of this jet. While all three models are able to predict qualitatively the recirculation, converging and reattachment regions observed experimentally, the standard k–ɛ turbulence model predicts a reattachment length that best agrees with the experimentally determined value. Received: 11 September 1996/Accepted: 30 May 1997  相似文献   

6.
In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using kε and kω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15–65° corner angles are studied. Also the effect of Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the stellar jet is studied. The Numerical results show that the jet entrains more with corner angle 65° and five wings number. The jet is close to a converged state for high Reynolds numbers. Also the influence of the inflow conditions on the jet characteristics is so strong.  相似文献   

7.
The background oriented Schlieren (BOS) technique has been applied to determine the density field in an oblique shock-separated turbulent boundary flow. Measurements were made for two cases, namely, with/without jet flow from the afterbody which is a nozzle. In addition, oil flow and Schlieren visualizations were carried out—the results show certain upstream features of interest including shock excursions. The mean density field from BOS is discussed along with results from conventional Schlieren flow visualization. The data extracted from the mean density field obtained through BOS have been compared for the jet-off and jet-on cases. The data obtained also show the mean density in the base region (jet-off case) to be about 50% of the freestream density and match the isentropic values for the underexpanded jet at the exit. The study involving shock–boundary interaction, movement of freestream shock over the afterbody in the presence of a jet plume provides understanding of flow physics in a flow regime where whole field velocity measurements are extremely difficult.  相似文献   

8.
C. Wang  Z. Y. Han  M. Situ 《Shock Waves》2006,15(2):129-135
The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D “line-flame ignition” and 2-D “plane-flame ignition”, were investigated. In the condition of 3-D “line-flame ignition” of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D “plane-flame ignition” of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30–90m/s and the delay time of ignition is estimated in the range of 0.12–0.29ms. PACS 47.40.Nm; 82.40.FpPart of this paper was presented at the 5th International Workshop on Shock/Vortex Interaction, Kaohsiung, October 27–31, 2003.  相似文献   

9.
 An experimental study of transient boiling heat transfer during a cooling of a hot cylindrical block with an impinging water jet has been made at atmospheric pressure. The experimental data were taken for the following conditions: a degree of subcooling of ΔT sub = 20–80 K, a jet velocity of u j  = 5–15 m/s, a nozzle diameter of d j  = 2 mm and three materials of copper, brass and carbon steel. The block was initially and uniformly heated to about 250 °C and the transient temperatures in the block were measured at eight locations in r-direction at two different depths from the surface during the cooling of hot block. The surface heat flux distribution with time was evaluated using a numerical analysis of 2-D heat conduction. Behavior of the wetting front, which is extending the nucleate boiling region outward, is observed with a high-speed video camera. A position of wetting region is measured and it is correlated well with a power function of time. The changes in estimated heat flux and temperature were compared with the position of wetting region to clarify the effects of subcooling, jet velocity and thermal properties of block on the transient cooling. Received on 17 March 2000  相似文献   

10.
High-resolution 2-D imaging of laser Rayleigh scattering is used to measure the detailed structure of the thermal dissipation field in a turbulent non-premixed CH4/H2/N2 jet flame. Measurements are performed in the near field (x/d = 5–20) of the flame where the primary combustion reactions interact with the turbulent flow. The contributions of both the axial and radial gradients to the mean thermal dissipation are determined from the 2-D dissipation measurements. The relative contributions of the two components vary significantly with radial position. The dissipation field exhibits thin layers of high dissipation. Noise suppression by adaptive smoothing enables accurate determination of the dissipation-layer widths from single-shot measurements. Probability density functions (PDF) of the dissipation-layer widths conditioned on temperature are approximately log-normal distributions. The conditional layer width PDFs are self-similar functions with the layer widths scaling with temperature to the 0.75 power. The high signal-to-noise ratio of the Rayleigh scattering images coupled with an interlacing technique for noise suppression enable fully resolved measurements of the mean power spectral density (PSD) of the temperature gradients. These spectra are used to determine the turbulence microscales by measuring a cutoff wavelength, λ C , at 2% of the peak PSD. The Batchelor scale is estimated from λ C , and the results are compared with estimates from scaling laws in non-reacting flows. At x/d = 20, the different approaches to determining the Batchelor scale are comparable on the jet centerline. However, the estimates from non-reacting flow scaling laws are significantly less accurate in off-centerline regions and at locations closer to the nozzle exit. Throughout the near field of the jet flame, the measured ratio of a characteristic dissipation-layer width to the local Batchelor scale is larger than values previously reported for the far field of non-reacting flows.  相似文献   

11.
 Temperatures, velocities, and droplet sizes are measured in turbulent condensing steam jets produced by a facial sauna, for varying nozzle diameters and varying initial velocities (Re=3,600–9,200). The release of latent heat due to droplet condensation causes the temperature in the two-phase jet to be significantly higher than in a single-phase jet. At some distance from the nozzle, droplets reach a maximum size and start to evaporate again, which results in a change in sign of latent heat release. The distance of maximum size is determined from droplet size measurements. The experimental results are compared with semi-analytical expressions and with a fully coupled numerical model of the turbulent condensing steam jet. The increase in centreline temperature due to droplet condensation is successfully predicted. Received: 5 April 2000 / Accepted: 15 November 2000  相似文献   

12.
An experimental and numerical study has been carried out to investigate the heat transfer characteristics of a horizontal circular cylinder exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the bottom of the cylinder. The study is focused on low Reynolds numbers ranging from 120 to 1,210, Grashof numbers up to Gr = 10Re 2 and slot-to-cylinder spacing from 2 to 8 of the slot width. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. A Mach–Zehnder Interferometer is used for measurement of local Nusselt number around the cylinder at 10° interval. It is observed that the average Nusselt number decreases with increasing the jet spacing and increases with rising the Reynolds number. A finite volume method utilizing a curvilinear coordinate transformation is used for numerical modeling. The numerical results show good agreement with the experimental results. The flow and thermal field are seen to be stable and symmetric around the cylinder over the range of parameters studied.  相似文献   

13.
The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet.  相似文献   

14.
The injection of a liquid jet into a crossing Mach 6 air flow is investigated. Experiments were conducted on a sharp leading edge flat plate with flush mounted injectors. Water jets were introduced through different nozzle shapes at relevant jet-to-air momentum–flux ratios. Sufficient temporal resolution to capture small scale effects was obtained by high-speed recording, while directional illumination allowed variation in field of view. Shock pattern and flow topology were visualized by Schlieren-technique. Correlations are proposed on relating water jet penetration height and lateral extension with the injection ratio and orifice diameter for circular injector jets. Penetration height and lateral extension are compared for different injector shapes at relevant jet-to-air momentum–flux ratios showing that penetration height and lateral extension decrease and increase, respectively, with injector’s aspect ratio. Probability density function analysis has shown that the mixing of the jet with the crossflow is completed at a distance of x/d j  ~ 40, independent of the momentum–flux ratio. Mean velocity profiles related with the liquid jet have been extracted by means of an ensemble correlation PIV algorithm. Finally, frequency analyses of the jet breakup and fluctuating shock pattern are performed using a Fast Fourier algorithm and characteristic Strouhal numbers of St = 0.18 for the liquid jet breakup and of St = 0.011 for the separation shock fluctuation are obtained.  相似文献   

15.
An innovative method is presented for control of an oscillatory turbulent jet in a thin rectangular cavity with a thickness to width ratio of 0.16. Jet flow control is achieved by mass injection of a secondary jet into the region above the submerged primary jet nozzle exit and perpendicular to the primary nozzle axis. An experimental model, a 2-D and a 3-D computational fluid dynamics (CFD) model are used to investigate the flow characteristics under various secondary injection mass flow rates and injection positions. Two-dimensional laser Doppler anemometry (LDA) measurements are compared with results from the CFD models, which incorporate a standard kε turbulence model or a 2-D and 3-D realisable kε model. Experimental results show deflection angles up to 23.3° for 24.6% of relative secondary mass flow are possible. The key to high jet control sensitivity is found to be lateral jet momentum with the optimum injection position at 12% of cavity width (31.6% of the primary nozzle length) above the primary nozzle exit. CFD results also show that a standard kε turbulence closure with nonequilibrium wall functions provides the best predictions of the flow.  相似文献   

16.
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle “cassette” (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period – suitable for uniformly accelerating microparticles – exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7–48 μm), density (600–16,800 kg/m3) and mass (0.25–10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (≤ 1 mg), it was demonstrated that payload scaling does not affect the microparticle exit velocities. These characteristics show that the microparticle exit conditions are well controlled and are in agreement with ideal theory. These features combined with an attention to the practical requirements of a pre-clinical system make the device suitable for investigating microparticle penetration into the skin for drug delivery.  相似文献   

17.
Direct and large-eddy simulations (DNS/LES) of accelerating round jets are used to analyze the effects of acceleration on the kinematics of vortex rings in the near field of the jet (x/D < 12). The acceleration is obtained by increasing the nozzle jet velocity with time, in a previously established (steady) jet, and ends once the inlet jet velocity is equal to twice its initial value. Several acceleration rates (α = 0.02–0.6) and Reynolds numbers (Re D = 500–20000) were simulated. Acceleration maps were used to make a detailed study of the kinematics of vortex rings in accelerating jets. One of the effects of the acceleration is to cause a number of new primary and secondary vortex merging events that are absent from steady jets. As the acceleration rate α increases, both the number of primary merging events between rings and the axial position where these take place decreases. The statistics for the speed of the starting ring that forms at the start of the acceleration phase for each simulation, agree well with the statistics for the “front” speed observed by Zhang and Johari (Phys Fluids 8:2185–2195, 1996). Acceleration maps and flow visualizations show that during the acceleration phase the near field coherent vortices become smaller and are formed at an higher frequency than in the steady jet, and their (mean) shedding frequency increases linearly with the acceleration rate. Finally, it was observed that the acceleration decreases the spreading rate of the jet, in agreement with previous experimental works.   相似文献   

18.
The possibility of critical gas flow from Laval nozzles in overexpanded regimes behind a bridge shock is investigated theoretically with and without allowance for viscous mixing at the edge of the jet. The influence of the mixing effect and flow separation from the nozzle walls on the critical flow conditions is analyzed. It is shown experimentally that these regimes coincide closely with the displacement of the normal shock to the nozzle exit and cessation of the emission by the jet of a discrete tone. Mariupol. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 180–184, July–August, 1994.  相似文献   

19.
A computational investigation is carried out to study the flow and heat transfer from a row of circular jets impinging on a concave surface. The computational domain simulates the impingement cooling zone of a gas turbine nozzle guide vane. The parameters, which are varied in the study include jet Reynolds number (Re d = 5000–67800), inter-jet distance to jet diameter ratio (c/d = 3.33 and 4.67) and target plate distance to jet diameter ratio (H/d = 1, 3 and 4). The flow field, predicted with K-ω turbulence model and using Fluent 6.2.16, is characterized with the presence of a pair of counter rotating vortices, an upwash fountain flow and entrainment. The local pressure coefficient and Nusselt number variations along the concave plate are presented and these values are found to under predict the available experimental data by about 12%.  相似文献   

20.
A supersonic exhaust plume test rig and a Rayleigh scattering system were developed. Molecular number densities in the supersonic high-temperature exhaust plume with and without an annular base flow were investigated. The physical meaning of the inferred mean temperature from the number density measurement in turbulent flows is clarified. For both flows, the potential core extends up to about six nozzle diameters, and self-similarity of the radial density distributions is observed at downstream sections Z/d=10–50. The recovery of the flow density deficit (or the decay of temperature) with the annular flow is faster than that without the annular flow at upstream sections Z/d ≤ 10. Received: 16 August 2000 / Accepted: 20 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号