首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper determines the parameters of all two-weight ternary codes C with the property that the minimum weight in the dual code C is at least 4. This yields a characterization of uniformly packed ternary [n, k, 4] codes. The proof rests on finding all integer solutions of the equation y2 = 4 × 3a + 13.  相似文献   

2.
In this paper, we give the first example of a non-cyclic triple-error-correcting code which is not equivalent to the primitive BCH code. It has parameters [63, 45, 7]. We also give better bounds on minimum distances of some [2 n ? 1, 2 n - 3n - 1] cyclic codes with three small zeroes. Finally, we reprove weight distribution results of Kasami for triple-error-correcting BCH-like codes using direct methods.  相似文献   

3.
It has been shown by Bogdanova and Boukliev [1] that there exist a ternary [38,5,24] code and a ternary [37,5,23] code. But it is unknown whether or not there exist a ternary [39,6,24] code and a ternary [38,6,23] code. The purpose of this paper is to prove that (1) there is no ternary [39,6,24] code and (2) there is no ternary [38,6,23] code using the nonexistence of ternary [39,6,24] codes. Since it is known (cf. Brouwer and Sloane [2] and Hamada and Watamori [14]) that (i) n3(6,23) = 38> or 39 and d3(38,6) = 22 or 23 and (ii) n3(6,24) = 39 or 40 and d3(39,6) = 23 or 24, this implies that n3(6,23) = 39, d3(38,6) = 22, n3(6,24) = 40 and d3(39,6) = 23, where n3<>(k,d) and d<>3(n,k) denote the smallest value of n and the largest value of d, respectively, for which there exists an [n,k,d] code over the Galois field GF(3).  相似文献   

4.
It has been observed by Assmus and Key as a result of the complete classification of Hadamard matrices of order 24, that the extremality of the binary code of a Hadamard matrix H of order 24 is equivalent to the extremality of the ternary code of HT. In this note, we present two proofs of this fact, neither of which depends on the classification. One is a consequence of a more general result on the minimum weight of the dual of the code of a Hadamard matrix. The other relates the lattices obtained from the binary code and the ternary code. Both proofs are presented in greater generality to include higher orders. In particular, the latter method is also used to show the equivalence of (i) the extremality of the ternary code, (ii) the extremality of the Z4-code, and (iii) the extremality of a lattice obtained from a Hadamard matrix of order 48.  相似文献   

5.
We show that the support of minimum Lee weight codewords having Hamming weight 5 in the Preparata code over Z4 form a 3-(2m,5,10) design for any odd integer m 3.  相似文献   

6.
Quasi-cyclic codes have provided a rich source of good linear codes. Previous constructions of quasi-cyclic codes have been confined mainly to codes whose length is a multiple of the dimension. In this paper it is shown how searches may be extended to codes whose length is a multiple of some integer which is greater than the dimension. The particular case of 5-dimensional codes over GF(3) is considered and a number of optimal codes (i.e., [n, k, d]-codes having largest possible minimum distance d for given length n and dimension k) are constructed. These include ternary codes with parameters [45, 5, 28], [36, 5, 22], [42, 5, 26], [48, 5, 30] and [72, 5, 46], all of which improve on the previously best known bounds.This research has been supported by the British SERC.  相似文献   

7.
The Goethals code is a binary nonlinear code of length 2m+1 which has codewords and minimum Hamming distance 8 for any odd . Recently, Hammons et. al. showed that codes with the same weight distribution can be obtained via the Gray map from a linear code over Z 4of length 2m and Lee distance 8. The Gray map of the dual of the corresponding Z 4 code is a Delsarte-Goethals code. We construct codes over Z 4 such that their Gray maps lead to codes with the same weight distribution as the Goethals codes and the Delsarte-Goethals codes.  相似文献   

8.
New elementary proofs of the uniqueness of certain Steiner systems using coding theory are presented. In the process some of the codes involved are shown to be unique.The uniqueness proof for the (5, 8, 24) Steiner system is due to John Conway. The blocks of the system are used to generate a length 24 binary code. Any two such codes are then shown to be equivalent up to a permutation of the coordinates. This code turns out to be the extended Golay code.In the uniqueness proof for the (4, 7, 23) system, the blocks generate a length 23 code which is extended to a length 24 code. The minimum weight vectors of this larger code hold a (5, 8, 24) Steiner system. This result together with the previous one completes the proof. At this point it is also possible to conclude that the codes involved are unique and hence equivalent to the binary perfect Golay code and its extension.Continuing with the uniqueness result for the (3, 6, 22) Steiner system, the blocks generate a length 22 code which is extended to the same length 24 code by the addition of two coordinates and one additional vector. This extension ultimately requires the computation of the coset weight distribution of the length 22 code, a result heretofore unknown. The complete coset weight distribution for a specific (22, 11, 6) self-dual code is computed using the CAMAC computer system.The (5, 6, 12) and (4, 5, 11) Steiner systems are treated differently. It is shown that each system is completely determined by the choice of six blocks which may be assumed to lie in any such design. These six blocks in fact form a basis for length 12 (and 11) ternary codes corresponding to the two systems and may be generated by an algorithm independent of the designs. This algorithm is presented and the minimum weight vectors of the resulting codes, the perfect ternary Golay code and its extension, are calculated by the CAMAC system.  相似文献   

9.
10.
In this correspondence, we will introduce a new combinatorial method for a coordinate-wise construction of the homogeneous-weight preserving Gray map for Galois rings by using elementary tools from Affine Geometries. Our construction differs in the methods used from the algebraic constructions done previously in [M. Greferath, S.E. Schmidt, Gray Isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code, IEEE Trans. Inform. Theory 45 (1999) 2522-2524; S. Ling, J.T. Blackford, Zpk+1-linear codes, IEEE Trans. Inform. Theory 48 (2002) 2592-2605].  相似文献   

11.
We give a classification of four-circulant singly even self-dual [60, 30, d] codes for \(d=10\) and 12. These codes are used to construct extremal singly even self-dual [60, 30, 12] codes with weight enumerator for which no extremal singly even self-dual code was previously known to exist. From extremal singly even self-dual [60, 30, 12] codes, we also construct optimal singly even self-dual [58, 29, 10] codes with weight enumerator for which no optimal singly even self-dual code was previously known to exist. Finally, we give some restriction on the possible weight enumerators of certain singly even self-dual codes with shadow of minimum weight 1.  相似文献   

12.
The van Lint-Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound to prove the actual minimum distance for a class of dual BCH codes of length q2−1 over Fq. We give cyclic codes [63,38,16] and [65,40,16] over F8 that are better than the known [63,38,15] and [65,40,15] codes.  相似文献   

13.
A complete classification is given of all [22, 11] and [24, 12] binary self-dual codes. For each code we give the order of its group, the number of codes equivalent to it, and its weight distribution. There is a unique [24, 12, 6] self-dual code. Several theorems on the enumeration of self-dual codes are used, including formulas for the number of such codes with minimum distance ? 4, and for the sum of the weight enumerators of all such codes of length n. Selforthogonal codes which are generated by code words of weight 4 are completely characterized.  相似文献   

14.
We consider here the construction of Type II codes over the abelian group Z4×Z4. The definition of Type II codes here is based on the definitions introduced by Bannai [2]. The emphasis is given on the construction of these types of codes over the abelian group Z4×Z4 and in particular, the methods applied by Gaborit [7] in the construction of codes over Z4 was extended to four different dualities with their corresponding weight functions (maps assigning weights to the alphabets of the code). In order to do this, we use the flattened form of the codes and construct binary codes analogous to the ones applied to Z4 codes. Since each duality generates more than one weight function, we focus on those weights satisfying the squareness property. Here, by the squareness property, we mean that the weight function wt assigns the weight 0 to the Z4×Z4 elements (0, 0),(2, 2) and the weight 4 to the elements (0, 2) and (2, 0). The main results of this paper are focused on the characterization of these codes and provide a method of construction that can be applied in the generation of such codes whose weight functions satisfy the squareness property.  相似文献   

15.
It is known that a projective linear two-weight code C over a finite field corresponds both to a set of points in a projective space over that meets every hyperplane in either a or b points for some integers a < b, and to a strongly regular graph whose vertices may be identified with the codewords of C. Here we extend this classical result to the case of a ring-linear code with exactly two nonzero homogeneous weights and sets of points in an associated projective ring geometry. We will introduce regular projective two-weight codes over finite Frobenius rings, we will show that such a code gives rise to a strongly regular graph, and we will give some constructions of two-weight codes using ring geometries. All these examples yield infinite families of strongly regular graphs with non-trivial parameters.   相似文献   

16.
The weight distribution of GRM (generalized Reed-Muller) codes is unknown in general. This article describes and applies some new techniques to the codes over F3. Specifically, we decompose GRM codewords into words from smaller codes and use this decomposition, along with a projective geometry technique, to relate weights occurring in one code with weights occurring in simpler codes. In doing so, we discover a new gap in the weight distribution of many codes. In particular, we show there is no word of weight 3m–2 in GRM3(4,m) for m>6, and for even-order codes over the ternary field, we show that under certain conditions, there is no word of weight d+, where d is the minimum distance and is the largest integer dividing all weights occurring in the code.  相似文献   

17.
Recently, active research has been performed on constructing t-designs from linear codes over Z 4. In this paper, we will construct a new simple 3 – (2 m , 7, 14/3 (2 m – 8)) design from codewords of Hamming weight 7 in the Z 4-Goethals code for odd m 5. For 3 arbitrary positions, we will count the number of codewords of Hamming weight 7 whose support includes those 3 positions. This counting can be simplified by using the double-transitivity of the Goethals code and divided into small cases. It turns out interestingly that, in almost all cases, this count is related to the value of a Kloosterman sum. As a result, we can also prove a new Kloosterman sum identity while deriving the 3-design.  相似文献   

18.
It is unknown whether or not there exists an [87, 5, 57; 3]-code. Such a code would meet the Griesmer bound. The purpose of this paper is to give a constructive proof of the existence of [q 4 + q 2q, 5, q 4q 3 + q 2 – 2q; q]-codes for any prime power q 3. As a special case, it is shown that there exists an [87, 5, 57; 3]-code with weight enumerator 1 + 156z 37 + 82z 60 + 2z 63 + 2z 78. The new construction settles an open problem due to Hill and Newton [10].  相似文献   

19.
One of the most important problems of coding theory is to constructcodes with best possible minimum distances. In this paper, we generalize the method introduced by [8] and obtain new codes which improve the best known minimum distance bounds of some linear codes. We have found a new linear ternary code and 8 new linear codes over with improved minimumdistances. First we introduce a generalized version of Gray map,then we give definition of quasi cyclic codes and introduce nearlyquasi cyclic codes. Next, we give the parameters of new codeswith their generator matrices. Finally, we have included twotables which give Hamming weight enumerators of these new codes.  相似文献   

20.
A method for demonstrating and enumerating uniformly efficient (permutation-optimal) trellis decoders for self-dual codes of high minimum distance is developed. Such decoders and corresponding permutations are known for relatively few codes.The task of finding such permutations is shown to be substantially simplifiable in the case of self-dual codes in general, and for self-dual codes of sufficiently high minimum distance it is shown that it is frequently possible to deduce the existence of these permutations directly from the parameters of the code.A new and tighter link between generalized Hamming weights and trellis representations is demonstrated: for some self-dual codes, knowledge of one of the generalized Hamming weights is sufficient to determine the entire optimal state complexity profile.These results are used to characterize the permutation-optimal trellises and generalized Hamming weights for all [32,16,8] binary self-dual codes and for several other codes. The numbers of uniformly efficient permutations for several codes, including the [24,12,8] Golay code and both [24,12,9] ternary self-dual codes, are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号