首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
A single Au atom has been shown to behave like H in its bonding to Si in several mono- and disilicon gold clusters. In the current work, we investigate the AuH analogy in trisilicon gold clusters, Si3Au3(+0-). Photoelectron spectroscopy and density functional calculations are combined to examine the geometric and electronic structure of Si3Au3-. We find that there are three isomers competing for the ground state of Si3Au3- as is the case for Si3H3-. Extensive structural searches show that the potential energy surfaces of the trisilicon gold clusters (Si3Au3-, Si3Au3, and Si3Au3+) are similar to those of the corresponding silicon hydrides. The lowest energy isomers for Si3Au3- and Si3Au3 are structurally similar to a Si3Au four-membered ring serving as a common structural motif. For Si3Au3+, the 2pi aromatic cyclotrisilenylium auride ion, analogous to the aromatic cyclotrisilenylium ion (Si3H3+), is the most stable species. Comparison of the structures and chemical bonding between Si3Au3(+0-) and the corresponding silicon hydrides further extends the isolobal analogy between Au and H.  相似文献   

2.
An ab initio study was performed in clusters up to four H(2)S molecules and benzene using calculations at MP26-31+G(*) and MP2/aug-cc-pVDZ levels. Differences between both sets of calculations show the importance of using large basis sets to describe the intermolecular interactions in this system. The obtained binding energies reflect that benzene has not the same behavior in H(2)S as in water, pointing to a higher solubility of this molecule in H(2)S than in water. The Bz-cluster binding energy was fitted to an asymptotic representation with a maximum value of the energy of -8.00 kcal/mol that converges in a cluster with 12 H(2)S molecules. The obtained intermolecular distance in the Bz-H(2)S dimer is similar to the experimental value; however, the difference is much larger for the angles defining the orientation. The influence of benzene produces a distortion of the (H(2)S)(n) clusters, so the intermolecular distances change with regard to the (H(2)S)(n) isolated clusters. Frequency shifts are larger in clusters with benzene than without it. In the smallest clusters the shift associated to the stretching of the S-H bonded to benzene is the largest one, but for the cluster with three H(2)S molecules this stretching is combined with the other S-H stretching of the molecule so the resulting shift is not the largest one.  相似文献   

3.
The structures and energies of Be(n)Si(n) and Be(2n)Si(n) (n = 1-4) clusters have been examined in ab initio theoretical electronic structure calculations. Cluster geometries have been established in B3LYP/6-31G(2df) calculations and accurate relative energies determined by the G3XMP2 method. The two atoms readily bond to each other and to other atoms of their own kind. The result is a great variety of low-energy clusters in a variety of structural types.  相似文献   

4.
The molecular structures, electron affinities, and dissociation energies of the Si(n)H/Si(n)H- (n = 4-10) species have been examined via five hybrid and pure density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The three different types of neutral-anion energy separations presented in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first Si-H dissociation energies, D(e)(Si(n)H --> Si(n) + H) for neutral Si(n)H and D(e)(Si(n)H- --> Si(n)- + H) for anionic Si(n)H- species, have also been reported. The structures of the ground states of these clusters are traditional H-Si single-bond forms. The ground-state geometries of Si5H, Si6H, Si8H, and Si9H predicted by the DFT methods are different from previous calculations, such as those obtained by Car-Parrinello molecular dynamics and nonorthogonal tight-binding molecular dynamics schemes. The most reliable EA(ad) values obtained at the B3LYP level of theory are 2.59 (Si4H), 2.84 (Si5H), 2.86 (Si6H), 3.19 (Si7H), 3.14 (Si8H), 3.36 (Si9H), and 3.56 (Si10H) eV. The first dissociation energies (Si(n)H --> Si(n) + H) predicted by all of these methods are 2.20-2.29 (Si4H), 2.30-2.83 (Si5H), 2.12-2.41 (Si6H), 1.75-2.03 (Si7H), 2.41-2.72 (Si8H), 1.86-2.11 (Si9H), and 1.92-2.27 (Si10H) eV. For the negatively charged ion clusters (Si(n)H- --> Si(n)- + H), the dissociation energies predicted are 2.56-2.69 (Si4H-), 2.80-3.01 (Si5H-), 2.86-3.06 (Si6H-), 2.80-3.03 (Si7H-), 2.69-2.92 (Si8H-), 2.92-3.18 (Si9H-), and 2.89-3.25 (Si10H-) eV.  相似文献   

5.
An experimental and theoretical study of the photoionization energies (IE's) of Ba(H(2)O)(n) clusters containing up to n = 4 water molecules has been performed. The clusters were generated by a pick-up source combining laser vaporization with pulsed supersonic expansion, and then photoionized by radiation of 272.5-340 nm. The experimentally determined IE(e)'s for n = 1 to 4 are 4.56 ± 0.05, 4.26 ± 0.05, 3.90 ± 0.05 and 3.71 ± 0.05 eV. This cluster size dependence of IE is reproduced within ±0.06 eV employing the mPW1PW91 density-functional and CCSD(T, Full) quantum-chemical methods combined with the 6-311++G(d,p) basis set for the H and O atoms and three different relativistic effective core potentials for Ba atoms. The calculations indicate that the lowest energy hydration structures represent the most relevant contributions to both the vertical and adiabatic ionization energies. Experimental and theoretical evidence correlates with the progressive surface-delocalization of the electron from the hydration cavity around the Ba atom and suggests that the intra-cluster electron transfer is possible even for small aggregates.  相似文献   

6.
7.
The cross sections for electron scattering on OH-(H2O)n for n = 0-4 were measured from threshold to approximately 50 eV. All detachment cross sections were found to follow the classical prediction given earlier [Phys. Rev. Lett. 74, 892 (1995)] with a threshold energy for electron-impact detachment that increased upon sequential hydration, yielding values in the range from 4.5 eV +/- 0.2 eV for OH- to 12.10 eV +/- 0.5 eV for OH-(H2O)4. For n > or = 1, we found that approximately 80% of the total reaction events lead to electron detachment plus total dissociation of the clusters into the constituent molecules of OH and H2O. Finally, we observed resonances in the cross sections for OH-(H2O)3 and for OH-(H2O)4. The resonances were located at approximately 15 eV and were ascribed to the formation of dianions in excited states.  相似文献   

8.
Laser-ablated Au atoms have been co-deposited with CO molecules in solid argon to produce gold carbonyls. In addition to the previously reported Au(CO)n (n = 1, 2) and Au2(CO)2 molecules, small gold cluster monocarbonyls Au(n)CO (n = 2-5) are formed on sample annealing and characterized using infrared spectroscopy on the basis of the results of the isotopic substitution and CO concentration change and comparison with theoretical predictions. Of particular interest is that the mononuclear gold carbonyls, Au(CO)n (n = 1, 2), are favored under the experimental conditions of higher CO concentration and lower laser energy, whereas the yields of the gold cluster carbonyls, Au(n)CO (n = 2-5) and Au2(CO)2, remarkably increase with lower CO concentration and higher laser power. Density functional theory (DFT) calculations have been performed on these molecules and the corresponding small naked gold clusters. The identities of these gold carbonyls Au(n)CO (n = 1-5) and Au(n)(CO)2 (n = 1, 2) are confirmed by the good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts.  相似文献   

9.
A recently proposed local Fukui function is used to predict the binding site of atomic hydrogen on silicon clusters. To validate the predictions, an extensive search for the more stable SinH (n=3-10) clusters has been done using a modified genetic algorithm. In all cases, the isomer predicted by the Fukui function is found by the search, but it is not always the most stable one. It is discussed that in the cases where the geometrical structure of the bare silicon cluster suffers a considerable change due to the addition of one hydrogen atom, the situation is more complicated and the relaxation effects should be considered.  相似文献   

10.
We produced the B7Au2- mixed cluster and studied its electronic structure and chemical bonding using photoelectron spectroscopy and ab initio calculations. The photoelectron spectra of B7Au2- were observed to be relatively simple with vibrational resolution, in contrast to the complicated spectra observed for pure B7-, which had contributions from three isomers (Alexandrova et al. J. Phys. Chem. A 2004, 108, 3509). Theoretical calculations show that B7Au2- possesses an extremely stable planar structure, identical to that of B7H2-, demonstrating that Au mimics H in its bonding to boron, analogous to the Au-Si bonding. The ground-state structure of B7Au2- (B7H2-) can be viewed as adding two Au (H) atoms to the terminal B atoms of a higher-lying planar isomer of B7-. The bonding and stability in the planar B7Au2- (B7H2-) clusters are elucidated on the basis of the strong covalent B-Au (H) bonding and the concepts of aromaticity/antiaromaticity in these systems.  相似文献   

11.
We carry out a systematic search for the atomic structures of silicon cluster cations and anions in the size range n=31-50 using density functional theory in the generalized-gradient approximation. The obtained lowest-energy candidates feature cagelike structures. We find that the computed binding energies and the dissociation pathways as well as the mobilities of our lowest-energy isomers of the cations are all in good agreement with the measured data from experiments. Furthermore, based on these isomers, we reveal that the steplike feature appearing in the measured high-resolution mobilities can be correlated with the corresponding fullerenes explicitly, which strongly support the notion that endohedral silicon fullerenelike structures are the most favored growth pattern for silicon clusters in the range n=31-50. Our calculation and analysis suggest that the proposed isomers are probably very close to the major-abundance isomers observed in experiments.  相似文献   

12.
Eugenol (4-Allyl-2-methoxyphenol), a phenol-derivative with an intramolecular -OH ...OCH(3) hydrogen bond (H bond), has been studied in a supersonic expansion using a number of complementary laser spectroscopic techniques. The mass-resolved excitation spectrum of eugenol and its water complexes are reported for the first time. The most intense set of bands on the resonantly enhanced multiphoton ionization (REMPI) spectrum of eugenol originate in a conformer whose S(1)<--S(0) transition is at 35 202 cm(-1) and the ionization threshold at (I(0)<--S(0)) 62 544+/-150 cm(-1) (7.755+/-0.019 eV). In addition, two low intensity features redshifted with respect to the 0(0) (0) transition have been identified as due to a second, less stable conformer. Ab initio calculations show that the potential energy landscape depicts at least three minima associated with one folded and two extended conformers, one of which is the most stable. Clusters of eugenol/water were prepared in a supersonic expansion by seeding eugenol and water in noble gas He and examined by two-color REMPI (R2PI) and IR-UV double resonance spectroscopies. Only one single isomer was observed for both 1:1 and 1:2 complexes, in contrast with the several stable conformers provided by the computations. The dissociation energies of the 1:1 and 1:2 complexes have been determined by the fragmentation threshold method and the results compared with those from ab initio calculations conducted at the B3LYP and MP2 levels with a variety of basis sets.  相似文献   

13.
We present optical absorption spectra in the UV-visible range (1.5 eV < E < 6 eV) for mass selected neutral gold clusters Au(n) (n = 1-5 and 7-9) embedded in solid Ne at 7 K. The experimental spectra are compared with time-dependent density functional calculations. Electronic transitions are distributed over the whole energy range without any concentration of the oscillator strength in a small energy window, characteristic for the more s-like metals such as the alkalis or silver. Contrary to the case of silver and partly copper clusters, transitions issued from mainly d-type states are significantly involved in low energy transitions. The measured integrated cross section is smaller (<20%) than expected from a free-electron system, manifesting the strong screening of the s electrons due to the proximity of the s and d levels in gold.  相似文献   

14.
The (TiO2)n clusters and their anions for n = 1-4 have been studied with coupled cluster theory [CCSD(T)] and density functional theory (DFT). For n > 1, numerous conformations are located for both the neutral and anionic clusters, and their relative energies are calculated at both the DFT and CCSD(T) levels. The CCSD(T) energies are extrapolated to the complete basis set limit for the monomer and dimer and calculated up to the triple-zeta level for the trimer and tetramer. The adiabatic and vertical electron detachment energies of the anionic clusters to the ground and first excited states of the neutral clusters are calculated at both levels and compared with the experimental results. The comparison allows for the definitive assignment of the ground-state structures of the anionic clusters. Anions of the dimer and tetramer are found to have very closely lying conformations within 2 kcal/mol at the CCSD(T) level, whereas that of the trimer does not. In addition, accurate clustering energies and heats of formation are calculated for the neutral clusters and compared with the available experimental data. Estimates of the titanium-oxygen bond energies show that they are stronger than the group VIB transition metal-oxygen bonds except for tungsten. The atomization energies of these clusters display much stronger basis set dependence than the clustering energies. This allows the calculation of more accurate heats of formation for larger clusters on the basis of calculated clustering energies.  相似文献   

15.
The interactions between small gold oxide cluster anions, Au(2,3)O-(n) (n=1-5), and CO were investigated in a fast-flow reactor mass spectrometer, and experimental results were verified with a guided ion beam mass spectrometer. Density functional calculations along with molecular dynamics simulations were also utilized to explain the experimental findings. From these studies, we show that, for the interactions between Au(m)O-(n) and CO, each atom counts. With the addition of a single gold atom, it is observed that association of CO and replacement of O(2) by CO become the dominant reaction channels as opposed to CO oxidation. We also present results that show that the oxidation of CO takes place only in the presence of a peripheral oxygen atom. However, this condition is not always sufficient. Furthermore, the association of CO onto Au(m)O-(n) follows a general qualitative rule based on the relationship between the energy of the cluster lowest unoccupied molecular orbital and the binding energy of CO.  相似文献   

16.
Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS(2)(H2O)n, where n=1-4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS(2)(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS(2)(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS(2) in the atmosphere, the concentrations of these clusters are predicted to be on the order of 10(5) CS(2)(H2O) clusters.cm(-3) and 10(2) CS(2)(H2O)(2) clusters.cm(-3) at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS(2)(H(2)O)(n) structures predicted to be present in a low-temperature molecular beam experiment.  相似文献   

17.
Theoretical study on the structures of neutral and singly charged Si(n)Li(p)((+)) (n=1-6, p=1-2) clusters have been carried out in the framework of the density functional theory (DFT) with the B3LYP functional. The structures of the neutral Si(n)Li(p) and cationic Si(n)Li(p)(+) clusters are found to keep the frame of the corresponding Si(n), Li species being adsorbed at the surface. The localization of the lithium cation is not the same one as that of the neutral atom. The Li(+) ion is preferentially located on a Si atom, while the Li atom is preferentially attached at a bridge site. A clear parallelism between the structures of Si(n)Na(p) and those of Si(n)Li(p) appears. The population analysis show that the electronic structure of Si(n)Li(p) can be described as Si(n)(p)(-)+pLi(+) for the small sizes considered. Vertical and adiabatic ionization potentials, adsorption energies, as well as electric dipole moments and static dipolar polarizabilities, are calculated for each considered isomer of neutral species.  相似文献   

18.
许多生理过程都通过分子间相互作用来实现。氢键则是最基本的化学作用力之一。具有碱性和酸性双官能团的芳香族化合物能与水作用形成氢键网络,对于实现生物体系的物质转移(质子转移、离子转移)起着十分重要的作用。在非水溶剂中,通过氢键发生质子转移反应动力学实验特征也己进行了广泛的研究。本文用密度泛函B3LYP方法在6-311G^*基组水平上对7-羟基喹啉-水复合物相互作用进行了研究,从成键特征及氢键复合物的稳定关系方面进行了理论计算。  相似文献   

19.
The molecular structures of neutral Si n Li ( n = 2-8) species and their anions have been studied by means of the higher level of the Gaussian-3 (G3) techniques. The lowest energy structures of these clusters have been reported. The ground-state structures of neutral clusters are "attaching structures", in which the Li atom is bound to Si n clusters. The ground-state geometries of anions, however, are "substitutional structures", which is derived from Si n+1 by replacing a Si atom with a Li (-). The electron affinities of Si n Li and Si n have been presented. The theoretical electron affinities of Si n are in good agreement with the experiment data. The reliable electron affinities of Si n Li are predicted to be 1.87 eV for Si 2Li, 2.06 eV for Si 3Li, 2.01 eV for Si 4Li, 2.61 eV for Si 5Li, 2.36 eV for Si 6Li, 2.21 eV for Si 7Li, and 3.18 eV for Si 8Li. The dissociation energies of Li atom from the lowest energy structures of Si n Li and Si atom from Si n clusters have also been estimated respectively to examine relative stabilities.  相似文献   

20.
During experiment on Au-B alloy clusters, an auro-boron oxide cluster Au2BO- was observed to be an intense peak dominating the Au-B mass spectra, along with weaker signals for AuBO- and Au3BO-. Well-resolved photoelectron spectra have been obtained for the three new oxide clusters, which exhibit an odd-even effect in electron affinities. Au2BO- is shown to be a closed shell molecule with a very high electron detachment energy, whereas AuBO and Au3BO neutrals are shown to be closed shell species with large HOMO-LUMO gaps, resulting in relatively low electron affinities. Density functional calculations were performed for both AunBO- (n = 1-3) and the corresponding HnBO- species to evaluate the analogy between bonding of gold and hydrogen in these clusters. The combination of experiment and theory allowed us to establish the structures and chemical bonding of these tertiary clusters. We find that the first gold atom does mimic hydrogen and interacts with the BO unit to produce a linear AuBO structure. This unit preserves its identity when interacting with additional gold atoms: a linear Au-[AuBO] complex is formed when adding one extra Au atom and two isomeric Au2-[AuBO] complexes are formed when adding two extra Au atoms. Since BO- is isoelectronic to CO, the AunBO- species can be alternatively viewed as Aun interacting with a BO- unit. The structures and chemical bonding in AunBO- are compared to those in the corresponding AunCO complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号