首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The mechanistic details of the Ce(IV)-driven oxidation of water mediated by a series of structurally related catalysts formulated as [Ru(tpy)(L)(OH(2))](2+) [L = 2,2'-bipyridine (bpy), 1; 4,4'-dimethoxy-2,2'-bipyridine (bpy-OMe), 2; 4,4'-dicarboxy-2,2'-bipyridine (bpy-CO(2)H), 3; tpy = 2,2';6',2'-terpyridine] is reported. Cyclic voltammetry shows that each of these complexes undergo three successive (proton-coupled) electron-transfer reactions to generate the [Ru(V)(tpy)(L)O](3+) ([Ru(V)=O](3+)) motif; the relative positions of each of these redox couples reflects the nature of the electron-donating or withdrawing character of the substituents on the bpy ligands. The first two (proton-coupled) electron-transfer reaction steps (k(1) and k(2)) were determined by stopped-flow spectroscopic techniques to be faster for 3 than 1 and 2. The addition of one (or more) equivalents of the terminal electron-acceptor, (NH(4))(2)[Ce(NO(3))(6)] (CAN), to the [Ru(IV)(tpy)(L)O](2+) ([Ru(IV)=O](2+)) forms of each of the catalysts, however, leads to divergent reaction pathways. The addition of 1 eq of CAN to the [Ru(IV)=O](2+) form of 2 generates [Ru(V)=O](3+) (k(3) = 3.7 M(-1) s(-1)), which, in turn, undergoes slow O-O bond formation with the substrate (k(O-O) = 3 × 10(-5) s(-1)). The minimal (or negligible) thermodynamic driving force for the reaction between the [Ru(IV)=O](2+) form of 1 or 3 and 1 eq of CAN results in slow reactivity, but the rate-determining step is assigned as the liberation of dioxygen from the [Ru(IV)-OO](2+) level under catalytic conditions for each complex. Complex 2, however, passes through the [Ru(V)-OO](3+) level prior to the rapid loss of dioxygen. Evidence for a competing reaction pathway is provided for 3, where the [Ru(V)=O](3+) and [Ru(III)-OH](2+) redox levels can be generated by disproportionation of the [Ru(IV)=O](2+) form of the catalyst (k(d) = 1.2 M(-1) s(-1)). An auxiliary reaction pathway involving the abstraction of an O-atom from CAN is also implicated during catalysis. The variability of reactivity for 1-3, including the position of the RDS and potential for O-atom transfer from the terminal oxidant, is confirmed to be intimately sensitive to electron density at the metal site through extensive kinetic and isotopic labeling experiments. This study outlines the need to strike a balance between the reactivity of the [Ru═O](z) unit and the accessibility of higher redox levels in pursuit of robust and reactive water oxidation catalysts.  相似文献   

2.
Photocurrent measurements have been made on nanocrystalline TiO2 surfaces derivatized by adsorption of a catalyst precursor, [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+, or chromophore, [Ru(bpy)2 (bpy(PO3H2)2)]2+ (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, and bpy(PO3H2)2 is 2,2'-bipyridyl-4,4'-diphosphonic acid), and on surfaces containing both complexes. This is an extension of earlier work on an adsorbed assembly containing both catalyst and chromophore. The experiments were carried out with the I3-/I- or quinone/hydroquinone (Q/H2Q) relays in propylene carbonate, propylene carbonate-water mixtures, and acetonitrile-water mixtures. Electrochemical measurements show that oxidation of surface-bound Ru(III)-OH2(3+) to Ru(IV)=O(2+) is catalyzed by the bpy complex. Addition of aqueous 0.1 M HClO4 greatly decreases photocurrent efficiencies for adsorbed [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+ with the I3-/I- relay, but efficiencies are enhanced for the Q/H2Q relay in both propylene carbonate-HClO4 and acetonitrile-HClO4 mixtures. The dependence of the incident photon-to-current efficiency (IPCE) on added H2Q in 95% propylene carbonate and 5% 0.1 M HClO4 is complex and can be interpreted as changing from rate-limiting diffusion to the film at low H2Q to rate-limiting diffusion within the film at high H2Q. There is no evidence for photoelectrochemical cooperativity on mixed surfaces containing both complexes with the IPCE response reflecting the relative surface compositions of the two complexes. These results provide insight into the possible design of photoelectrochemical synthesis cells for the oxidation of organic substrates.  相似文献   

3.
The complexes [Ru(tpy)(acac)(Cl)], [Ru(tpy)(acac)(H(2)O)](PF(6)) (tpy = 2,2',2"-terpyridine, acacH = 2,4 pentanedione) [Ru(tpy)(C(2)O(4))(H(2)O)] (C(2)O(4)(2)(-) = oxalato dianion), [Ru(tpy)(dppene)(Cl)](PF(6)) (dppene = cis-1,2-bis(diphenylphosphino)ethylene), [Ru(tpy)(dppene)(H(2)O)](PF(6))(2), [Ru(tpy)(C(2)O(4))(py)], [Ru(tpy)(acac)(py)](ClO(4)), [Ru(tpy)(acac)(NO(2))], [Ru(tpy)(acac)(NO)](PF(6))(2), and [Ru(tpy)(PSCS)Cl] (PSCS = 1-pyrrolidinedithiocarbamate anion) have been prepared and characterized by cyclic voltammetry and UV-visible and FTIR spectroscopy. [Ru(tpy)(acac)(NO(2))](+) is stable with respect to oxidation of coordinated NO(2)(-) on the cyclic voltammetric time scale. The nitrosyl [Ru(tpy)(acac)(NO)](2+) falls on an earlier correlation between nu(NO) (1914 cm(-)(1) in KBr) and E(1/2) for the first nitrosyl-based reduction 0.02 V vs SSCE. Oxalate ligand is lost from [Ru(II)(tpy)(C(2)O(4))(H(2)O)] to give [Ru(tpy)(H(2)O)(3)](2+). The Ru(III/II) and Ru(IV/III) couples of the aqua complexes are pH dependent. At pH 7.0, E(1/2) values are 0.43 V vs NHE for [Ru(III)(tpy)(acac)(OH)](+)/[Ru(II)(tpy)(acac)(H(2)O)](+), 0.80 V for [Ru(IV)(tpy)(acac)(O)](+)/[Ru(III)(tpy)(acac)(OH)](+), 0.16 V for [Ru(III)(tpy)(C(2)O(4))(OH)]/[Ru(II)(tpy)(C(2)O(4))(H(2)O)], and 0.45 V for [Ru(IV)(tpy)(C(2)O(4))(O)]/[Ru(III)(tpy)(C(2)O(4))(OH)]. Plots of E(1/2) vs pH define regions of stability for the various oxidation states and the pK(a) values of aqua and hydroxo forms. These measurements reveal that C(2)O(4)(2)(-) and acac(-) are electron donating to Ru(III) relative to bpy. Comparisons with redox potentials for 21 related polypyridyl couples reveal the influence of ligand changes on the potentials of the Ru(IV/III) and Ru(III/II) couples and the difference between them, DeltaE(1/2). The majority of the effect appears in the Ru(III/II) couple. ()A linear correlation exists between DeltaE(1/2) and the sum of a set of ligand parameters defined by Lever et al., SigmaE(i)(L(i)), for the series of complexes, but there is a dramatic change in slope at DeltaE(1/2) approximately -0.11 V and SigmaE(i)(L(i)) = 1.06 V. Extrapolation of the plot of DeltaE(1/2) vs SigmaE(i)(L(i)) suggests that there may be ligand environments in which Ru(III) is unstable with respect to disproportionation into Ru(IV) and Ru(II). This would make the two-electron Ru(IV)O/Ru(II)OH(2) couple more strongly oxidizing than the one-electron Ru(IV)O/Ru(III)OH couple.  相似文献   

4.
Seok WK  Meyer TJ 《Inorganic chemistry》2005,44(11):3931-3941
The oxidation of benzaldehyde and several of its derivatives to their carboxylic acids by cis-[Ru(IV)(bpy)2(py)(O)]2+ (Ru(IV)=O2+; bpy is 2,2'-bipyridine, py is pyridine), cis-[Ru(III)(bpy)2(py)(OH)]2+ (Ru(III)-OH2+), and [Ru(IV)(tpy)(bpy)(O)]2+ (tpy is 2,2':6',2'-terpyridine) in acetonitrile and water has been investigated using a variety of techniques. Several lines of evidence support a one-electron hydrogen-atom transfer (HAT) mechanism for the redox step in the oxidation of benzaldehyde. They include (i) moderate k(C-H)/k(C-D) kinetic isotope effects of 8.1 +/- 0.3 in CH3CN, 9.4 +/- 0.4 in H2O, and 7.2 +/- 0.8 in D2O; (ii) a low k(H2O/D2O) kinetic isotope effect of 1.2 +/- 0.1; (iii) a decrease in rate constant by a factor of only approximately 5 in CH3CN and approximately 8 in H2O for the oxidation of benzaldehyde by cis-[Ru(III)(bpy)2(py)(OH)]2+ compared to cis-[Ru(IV)(bpy)2(py)(O)]2+; (iv) the appearance of cis-[Ru(III)(bpy)2(py)(OH)]2+ rather than cis-[Ru(II)(bpy)2(py)(OH2)]2+ as the initial product; and (v) the small rho value of -0.65 +/- 0.03 in a Hammett plot of log k vs sigma in the oxidation of a series of aldehydes. A mechanism is proposed for the process occurring in the absence of O2 involving (i) preassociation of the reactants, (ii) H-atom transfer to Ru(IV)=O2+ to give Ru(III)-OH2+ and PhCO, (iii) capture of PhCO by Ru(III)-OH2+ to give Ru(II)-OC(O)Ph+ and H+, and (iv) solvolysis to give cis-[Ru(II)(bpy)2(py)(NCCH3)]2+ or the aqua complex and the carboxylic acid as products.  相似文献   

5.
Four distinct intermediates, Ru(IV)═O(2+), Ru(IV)(OH)(3+), Ru(V)═O(3+), and Ru(V)(OO)(3+), formed by oxidation of the catalyst [Ru(Mebimpy)(4,4'-((HO)(2)OPCH(2))(2)bpy)(OH(2))](2+) [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl) and 4,4'-((HO)(2)OPCH(2))(2)bpy = 4,4'-bismethylenephosphonato-2,2'-bipyridine] on nanoITO (1-PO(3)H(2)) have been identified and utilized for electrocatalytic benzyl alcohol oxidation. Significant catalytic rate enhancements are observed for Ru(V)(OO)(3+) (~3000) and Ru(IV)(OH)(3+) (~2000) compared to Ru(IV)═O(2+). The appearance of an intermediate for Ru(IV)═O(2+) as the oxidant supports an O-atom insertion mechanism, and H/D kinetic isotope effects support net hydride-transfer oxidations for Ru(IV)(OH)(3+) and Ru(V)(OO)(3+). These results illustrate the importance of multiple reactive intermediates under catalytic water oxidation conditions and possible control of electrocatalytic reactivity on modified electrode surfaces.  相似文献   

6.
A bis(ruthenium-bipyridine) complex bridged by 1,8-bis(2,2':6',2'-terpyrid-4'-yl)anthracene (btpyan), [Ru(2)(μ-Cl)(bpy)(2)(btpyan)](BF(4))(3) ([1](BF(4))(3); bpy = 2,2'-bipyridine), was prepared. The cyclic voltammogram of [1](BF(4))(3) in water at pH?1.0 displayed two reversible [Ru(II),Ru(II)](3+)/[Ru(II),Ru(III)](4+) and [Ru(II),Ru(III)](4+)/[Ru(III),Ru(III)](5+) redox couples at E(1/2)(1) = +0.61 and E(1/2)(2) = +0.80?V (vs. Ag/AgCl), respectively, and an irreversible anodic peak at around E = +1.2?V followed by a strong anodic currents as a result of the oxidation of water. The controlled potential electrolysis of [1](3+) ions at E = +1.60?V in water at pH?2.6 (buffered with H(3)PO(4)/NaH(2)PO(4)) catalytically evolved dioxygen. Immediately after the electrolysis of the [1](3+) ion in H(2)(16)O at E = +1.40?V, the resultant solution displayed two resonance Raman bands at nu = 442 and 824?cm(-1). These bands shifted to nu = 426 and 780?cm(-1), respectively, when the same electrolysis was conducted in H(2)(18)O. The chemical oxidation of the [1](3+) ion by using a Ce(IV) species in H(2)(16)O and H(2)(18)O also exhibited the same resonance Raman spectra. The observed isotope frequency shifts (Δnu = 16 and 44?cm(-1)) fully fit the calculated ones based on the Ru-O and O-O stretching modes, respectively. The first successful identification of the metal-O-O-metal stretching band in the oxidation of water indicates that the oxygen-oxygen bond at the stage prior to the evolution of O(2) is formed through the intramolecular coupling of two Ru-oxo groups derived from the [1](3+) ion.  相似文献   

7.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

8.
Sui LZ  Yang WW  Yao CJ  Xie HY  Zhong YW 《Inorganic chemistry》2012,51(3):1590-1598
A dimetallic biscyclometalated ruthenium complex, [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) (bpy = 2,2'-bipyridine; dpb = 1,4-di-2-pyridylbenzene), with a tris-bidentate coordination mode has been prepared. The electronic properties of this complex were studied by electrochemical and spectroscopic analysis and DFT/TDDFT calculations on both rac and meso isomers. Complex [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) has a similar 1,4-benzenedicyclometalated ruthenium (Ru-phenyl-Ru) structural component with a previously reported bis-tridentate complex, [(tpy)Ru(tpb)Ru(tpy)](2+) (tpy = 2,2';6',2″-terpyridine; tpb = 1,2,4,5-tetra-2-pyridylbenzene). The charge delocalizations of these complexes across the Ru-phenyl-Ru array were investigated and compared by studying the corresponding one-electron-oxidized species, generated by chemical oxidation or electrochemical electrolysis, with DFT/TDDFT calculations and spectroscopic and EPR analysis. These studies indicate that both [(bpy)(2)Ru(dpb)Ru(bpy)(2)](3+) and [(tpy)Ru(tpb)Ru(tpy)](3+) are fully delocalized systems. However, the coordination mode of the metal component plays an important role in influencing their electronic properties.  相似文献   

9.
The complexes [Ru(tpy)(bpy)(dmso)](OSO(2)CF(3))(2) and trans-[Ru(tpy)(pic)(dmso)](PF(6)) (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, pic is 2-pyridinecarboxylate, and dmso is dimethyl sulfoxide) were investigated by picosecond transient absorption spectroscopy in order to monitor excited-state intramolecular S-->O isomerization of the bound dmso ligand. For [Ru(tpy)(bpy)(dmso)](2+), global analysis of the spectra reveals changes that are fit by a biexponential decay with time constants of 2.4 +/- 0.2 and 36 +/- 0.2 ps. The first time constant is assigned to relaxation of the S-bonded (3)MLCT excited state. The second time constant represents both excited-state relaxation to ground state and excited-state isomerization to form O-[Ru(tpy)(bpy)(dmso)](2+). In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.024), isomerization of [Ru(tpy)(bpy)(dmso)](2+) occurs with a time constant of 1.5 ns. For trans-[Ru(tpy)(pic)(dmso)](+), global analysis of the transient spectra reveals time constants of 3.6 +/- 0.2 and 118 +/- 2 ps associated with these two processes. In conjunction with the S-->O isomerization quantum yield (Phi(S)(-->)(O) = 0.25), isomerization of trans-[Ru(tpy)(pic)(dmso)](+) occurs with a time constant of 480 ps. In both cases, the thermally relaxed excited states are assigned as terpyridine-localized (3)MLCT states. Electronic state diagrams are compiled employing these data as well as electrochemical, absorption, and emission data to describe the reactivity of these complexes. The data illustrate that rapid bond-breaking and bond-making reactions can occur from (3)MLCT excited states formed from visible light irradiation.  相似文献   

10.
The oxidation of water catalyzed by [Ru(tpy)(bpy)(OH(2))](ClO(4))(2) (1; tpy = 2,2';6',2'-terpyridine; bpy = 2,2'-bipyridine) is evaluated in different acidic media at variable oxidant concentrations. The observed rate of dioxygen evolution catalyzed by 1 is found to be highly dependent on pH and the identity of the acid; e.g., d[O(2)]/dt is progressively faster in H(2)SO(4), CF(3)SO(3)H (HOTf), HClO(4), and HNO(3), respectively. This trend does not track with thermodynamic driving force of the electron-transfer reactions between the terminal oxidant, (NH(4))(2)[Ce(NO(3))(6)] (CAN), and Ru catalyst in each of the acids. The particularly high reactivity in HNO(3) is attributed to the NO(3)(-) anion: (i) enabling relatively fast electron-transfer steps; (ii) participating in a base-assisted concerted atom-proton transfer process that circumvents the formation of high energy intermediates during the O-O bond formation process; and (iii) accelerating the liberation of dioxygen from the catalyst. Consequently, the position of the rate-determining step within the catalytic cycle can be affected by the acid medium. These factors collectively contribute to the position of the rate-determining step within the catalytic cycle being affected by the acid medium. This offering also outlines how other experimental issues (e.g., spontaneous decay of the Ce(IV) species in acidic media; CAN/catalyst molar ratio; types of catalytic probes) can affect the Ce(IV)-driven oxidation of water catalyzed by homogeneous molecular complexes.  相似文献   

11.
Electrocatalytic reduction of CO(2) by [Ru(tpy)(bpy)(solvent)](2+) (tpy = 2,2':6',2'-terpyridine, bpy = 2,2'-bipyridine) and its structural analogs is initiated by sequential 1e(-) reductions at the tpy and bpy ligands followed by rate limiting CO(2) addition to give a metallocarboxylate intermediate. It undergoes further reduction and loss of CO.  相似文献   

12.
The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2'-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.  相似文献   

13.
Oxygen isotope fractionation is applied for the first time to probe the catalytic oxidation of water using a widely studied ruthenium complex, [Ru(II)(tpy)(bpy)(H(2)O)](ClO(4))(2) (bpy = 2,2'-bipyridine; tpy = 2,2';6",2"-terpyridine). Competitive oxygen-18 kinetic isotope effects ((18)O KIEs) derived from the ratio of (16,16)O(2) to (16,18)O(2) formed from natural-abundance water vary from 1.0132 ± 0.0005 to 1.0312 ± 0.0004. Experiments were conducted with cerium(IV) salts at low pH and a photogenerated ruthenium(III) tris(bipyridine) complex at neutral pH as the oxidants. The results are interpreted within the context of catalytic mechanisms using an adiabatic formalism to ensure the highest barriers for electron-transfer and proton-coupled electron-transfer steps. In view of these contributions, O-O bond formation is predicted to be irreversible and turnover-limiting. The reaction with the largest (18)O KIE exhibits the greatest degree of O-O coupling in the transition state. Smaller (18)O KIEs are observed due to multiple rate-limiting steps or transition-state structures which do not involve significant O-O motion. These findings provide benchmarks for systematizing mechanisms of O-O bond formation, the critical step in water oxidation by natural and synthetic catalysts. In addition, the measurements introduce a new tool for calibrating computational studies using relevant experimental data.  相似文献   

14.
Swavey S  Brewer KJ 《Inorganic chemistry》2002,41(15):4044-4050
Supramolecular trimetallic complexes [((tpy)RuCl(BL))(2)RhCl(2)](3+) where tpy = 2,2':6',2' '-terpyridine and BL = dpp or bpm [dpp = 2,3-bis(2-pyridyl)pyrazine and bpm = 2,2'-bipyrimidine] have been synthesized and characterized. The mixed-metal complexes couple a reactive rhodium(III) center to two ruthenium(II) light absorbers to form a light absorber-electron collector-light absorber triad. The variation of the bridging (dpp and bpm) and terminal (tpy in lieu of bpy) ligands has some profound effects on the properties of these complexes, and they are remarkably different from the previously reported [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+) system. The electrochemical data for both title trimetallics consist of overlapping Ru(III/II) couples for both terminal metals at 1.12 V versus the Ag/AgCl reference electrode. Cathodically an irreversible Rh(III/I) reduction followed by bridging ligand reductions is seen. This is indicative of highest occupied molecular orbitals (HOMO) localized on the terminal ruthenium metal centers and a lowest unoccupied molecular orbital (LUMO) residing on the rhodium. This rhodium-based LUMO is in contrast to the bpy analogue [((bpy)(2)Ru(bpm))(2)RhCl(2)](5+), which has a bpm(pi) localized LUMO. This orbital inversion by terminal ligand variation illustrates the similar energy of these Rh(dsigma) and bpm(pi) orbitals within this structural motif. Both title trimetallics possess broad, low-energy Ru --> BL charge transfer absorbances at 540 nm (dpp) and 656 nm (bpm). A comparison of the spectroscopic, electrochemical, and spectroelectrochemical properties of these trimetallic complexes is presented.  相似文献   

15.
Seok WK  Meyer TJ 《Inorganic chemistry》2004,43(17):5205-5215
The net six-electron oxidation of aniline to nitrobenzene or azoxybenzene by cis-[Ru(IV)(bpy)(2)(py)(O)](2+) (bpy is 2,2'-bipyridine; py is pyridine) occurs in a series of discrete stages. In the first, initial two-electron oxidation is followed by competition between oxidative coupling with aniline to give 1,2-diphenylhydrazine and capture by H(2)O to give N-phenylhydroxylamine. The kinetics are first order in aniline and first order in Ru(IV) with k(25.1 degrees C, CH(3)CN) = (2.05 +/- 0.18) x 10(2) M(-1) s(-1) (DeltaH(++) = 5.0 +/- 0.7 kcal/mol; DeltaS(++) = -31 +/- 2 eu). On the basis of competition experiments, k(H)2(O)/k(D)2(O) kinetic isotope effects, and the results of an (18)O labeling study, it is concluded that the initial redox step probably involves proton-coupled two-electron transfer from aniline to cis-[Ru(IV)(bpy)(2)(py)(O)](2+) (Ru(IV)=O(2+)). The product is an intermediate nitrene (PhN) or a protonated nitrene (PhNH(+)) which is captured by water to give PhNHOH or aniline to give PhNHNHPh. In the following stages, PhNHOH, once formed, is rapidly oxidized by Ru(IV)=O(2+) to PhNO and PhNHNHPh to PhN=NPh. The rate laws for these reactions are first order in Ru(IV)=O(2+) and first order in reductant with k(14.4 degrees C, H(2)O/(CH(3))(2)CO) = (4.35 +/- 0.24) x 10(6) M(-1) s(-1) for PhNHOH and k(25.1 degrees C, CH(3)CN) = (1.79 +/- 0.14) x 10(4) M(-1) s(-1) for PhNHNHPh. In the final stages of the six-electron reactions, PhNO is oxidized to PhNO(2) and PhN=NPh to PhN(O)=NPh. The oxidation of PhNO is first order in PhNO and in Ru(IV)=O(2+) with k(25.1 degrees C, CH(3)CN) = 6.32 +/- 0.33 M(-1) s(-1) (DeltaH(++) = 4.6 +/- 0.8 kcal/mol; DeltaS(++) = -39 +/- 3 eu). The reaction occurs by O-atom transfer, as shown by an (18)O labeling study and by the appearance of a nitrobenzene-bound intermediate at low temperature.  相似文献   

16.
The catalytic activity of [Ru(tpy)(bpy)OH(2)](2+) (tpy = 2,2':6',2'-terpyridine and bpy = 2,2'-bipyridine) increased by a 4'-substituted ethoxy group on the tpy ligand by more than one order of magnitude to give 1.1 × 10(-1) s(-1) of catalyst turnover frequency, which is comparable with the hitherto-reported champion data.  相似文献   

17.
Meyer TJ  Huynh MH 《Inorganic chemistry》2003,42(25):8140-8160
There is a remarkable redox chemistry of higher oxidation state M(IV)-M(VI) polypyridyl complexes of Ru and Os. They are accessible by proton loss and formation of oxo or nitrido ligands, examples being cis-[RuIV(bpy)2(py)(O)]2+ (RuIV=O2+, bpy=2,2'-bipyridine, and py=pyridine) and trans-[OsVI(tpy)(Cl)2(N)]+ (tpy=2,2':6',2' '-terpyridine). Metal-oxo or metal-nitrido multiple bonding stabilizes the higher oxidation states and greatly influences reactivity. O-atom transfer, hydride transfer, epoxidation, C-H insertion, and proton-coupled electron-transfer mechanisms have been identified in the oxidation of organics by RuIV=O2+. The Ru-O multiple bond inhibits electron transfer and promotes complex mechanisms. Both O atoms can be used for O-atom transfer by trans-[RuVI(tpy)(O)2(S)]2+ (S=CH3CN or H2O). Four-electron, four-proton oxidation of cis,cis-[(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+ occurs to give cis,cis-[(bpy)2(O)RuV-O-RuV(O)(bpy)2]4+ which rapidly evolves O2. Oxidation of NH3 in trans-[OsII(tpy)(Cl)2(NH3)] gives trans-[OsVI(tpy)(Cl)2(N)]+ through a series of one-electron intermediates. It and related nitrido complexes undergo formal N- transfer analogous to O-atom transfer by RuIV=O2+. With secondary amines, the products are the hydrazido complexes, cis- and trans-[OsV(L3)(Cl)2(NNR2)]+ (L3=tpy or tpm and NR2-=morpholide, piperidide, or diethylamide). Reactions with aryl thiols and secondary phosphines give the analogous adducts cis- and trans-[OsIV(tpy)(Cl)2(NS(H)(C6H4Me))]+ and fac-[OsIV(Tp)(Cl)2(NP(H)(Et2))]. In dry CH3CN, all have an extensive multiple oxidation state chemistry based on couples from Os(VI/V) to Os(III/II). In acidic solution, the OsIV adducts are protonated, e.g., trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+, and undergo proton-coupled electron transfer to quinone to give OsV, e.g., trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ and hydroquinone. These reactions occur with giant H/D kinetic isotope effects of up to 421 based on O-H, N-H, S-H, or P-H bonds. Reaction with azide ion has provided the first example of the terminal N4(2-) ligand in mer-[OsIV(bpy)(Cl)3(NalphaNbetaNgammaNdelta)]-. With CN-, the adduct mer-[OsIV(bpy)(Cl)3(NCN)]- has an extensive, reversible redox chemistry and undergoes NCN(2-) transfer to PPh3 and olefins. Coordination to Os also promotes ligand-based reactivity. The sulfoximido complex trans-[OsIV(tpy)(Cl)2(NS(O)-p-C6H4Me)] undergoes loss of O2 with added acid and O-atom transfer to trans-stilbene and PPh3. There is a reversible two-electron/two-proton, ligand-based acetonitrilo/imino couple in cis-[OsIV(tpy)(NCCH3)(Cl)(p-NSC6H4Me)]+. It undergoes reversible reactions with aldehydes and ketones to give the corresponding alcohols.  相似文献   

18.
Compared to earlier single site catalysts, greatly enhanced rates of electrocatalytic water oxidation by the Ru carbene catalyst [Ru(tpy)(Mebim-py)(OH(2))](2+) (tpy = 2,2':6',2'-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene) have been observed. The mechanism appears to be the same with proton coupled electron transfer (PCET) activation to Ru(V)=O(3+) followed by O-O coupling and further oxidation. An important factor in the enhanced reactivity of the carbene complex may come from increased driving force for the O-O bond forming step.  相似文献   

19.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

20.
Cheung KC  Guo P  So MH  Zhou ZY  Lee LY  Wong KY 《Inorganic chemistry》2012,51(12):6468-6475
Ruthenium(II) terpyridine complexes containing the pyrrole-tagged 2,2'-dipyridylamine ligand PPP (where PPP stands for N-(3-bis(2-pyridyl)aminopropyl)pyrrole with the general formula [Ru(tpy)(PPP)X](n+) (1, X = Cl(-); 2, X = H(2)O; 3, X = CH(3)CN; tpy = 2,2':6',2"-terpyridine) have been synthesized and characterized by (1)H NMR, IR, UV-vis, mass spectrometry, and elemental analysis. 1 and 2 have been structurally characterized by X-ray crystallography. Both 1 and 2 were successfully immobilized onto glassy carbon electrode via anodic oxidation of the pyrrole moiety on the PPP ligand to give stable and highly electroactive polymer films. Cyclic voltammetric studies of 1 in acetonitrile revealed a Ru(III)/Ru(II) couple at 0.4 V vs Cp(2)Fe(+/0) initially, but another redox couple resulting from chloride substitution by acetonitrile developed at E(1/2) = 0.82 V upon repetitive potential scan. This ligand substitution was induced by the acidic local environment caused by the release of protons during pyrrole polymerization. The electropolymerization of 2 in aqueous medium allowed the observation of the formation of Ru(IV)═O species in polypyrrole film. As the film grew thicker, the size of the Ru(III)/(/)Ru(II) couple (E(1/2) = 0.8 V vs SCE at pH 1) of poly[Ru(tpy)(PPP)(OH(2))](n+) increased accordingly, whereas the growth of the Ru(IV)/Ru(III) couple (E(1/2) = 0.89 V vs SCE at pH 1) leveled off after the film had reached a certain thickness. The Pourbaix diagram of the E(1/2) of the Ru(III) /Ru(II) and Ru(IV)/Ru(III) couples vs pH of the electrolyte medium has been obtained. The resulting poly[Ru(tpy)(PPP)(OH(2))](n+) film is electrocatalytically active toward the oxidation of benzyl alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号