首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with ? resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force-distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with ?-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal-ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg-Healy-Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force-distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)(3) phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.  相似文献   

2.
The thermodynamic stability and electronic structure of 40 surfaces of lithium peroxide (Li(2)O(2)) and lithium oxide (Li(2)O) were characterized using first-principles calculations. As these compounds constitute potential discharge products in Li-oxygen batteries, their surface properties are expected to play a key role in understanding electrochemical behavior in these systems. Stable surfaces were identified by comparing 23 distinct Li(2)O(2) surfaces and 17 unique Li(2)O surfaces; crystallite areal fractions were determined through application of the Wulff construction. Accounting for the oxygen overbinding error in density functional theory results in the identification of several new Li(2)O(2) oxygen-rich {0001} and {1 ?100} terminations that are more stable than those previously reported. Although oxygen-rich facets predominate in Li(2)O(2), in Li(2)O stoichiometric surfaces are preferred, consistent with prior studies. Surprisingly, surface-state analyses reveal that the stable surfaces of Li(2)O(2) are half-metallic, despite the fact that Li(2)O(2) is a bulk insulator. Surface oxygens in these facets are ferromagnetic with magnetic moments ranging from 0.2 to 0.5 μ(B). In contrast, the stable surfaces of Li(2)O are insulating and nonmagnetic. The distinct surface properties of these compounds may explain observations of electrochemical reversibility for systems in which Li(2)O(2) is the discharge product and the irreversibility of systems that discharge to Li(2)O. Moreover, the presence of conductive surface pathways in Li(2)O(2) could offset capacity limitations expected to arise from limited electron transport through the bulk.  相似文献   

3.
Fractal dimension of a carious tooth surface was determined using an electrochemical method. The method was based on time-dependent diffusion towards electrode surfaces, which is one of the most useful and reliable methods for the determination of fractal dimension of electrode surfaces. For this purpose, the tooth was covered with a gold layer, which acted as an electrode in electrochemical experiments. It is suggested that the fractal dimension can be used as a quantitative measure of the state of dental surfaces. The method presented demonstrates the power of electrochemical techniques for the determination of fractal dimension of surface of non-conducting objects.  相似文献   

4.
Surface-enhanced Raman spectroscopy (SERS) studies of electrode/solution interfaces are important for understanding electrochemical processes. However, revealing the nature of reactions at well-defined single crystal electrode surfaces, which are SERS-inactive, remains challenging. In this work, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used for the first time to study electrochemical adsorption and hydrogenation reactions at single crystal surfaces in nonaqueous solvents. A roughened Au surface was also studied for comparison. The experimental results show that the hydrogenation of adsorbed p-ethynylaniline (PEAN) on roughened Au electrode surfaces occurred at very negative potentials in methanol because of the catalytic effect of surface plasmon resonance (SPR). However, because “hot electrons” were blocked by the silica shell of Au@SiO2 nanoparticles and aprotic acetonitrile was an ineffective hydrogen source, surface reactions at Au(111) were inhibited in the systems studied. Density functional theory (DFT) calculations revealed that the PEAN triple bond opened, allowing adsorption in a flat configuration on the Au(111) surface via two carbon atoms. This work provides an advanced understanding of electrochemical interfacial processes at single crystal surfaces in nonaqueous systems.  相似文献   

5.
In this work, scanning electrochemical microscopy (SECM) measurements were employed to characterize the electrochemical activities on polished and as-received surfaces of the 2098-T351 aluminum alloy (AA2098-T351). The effects of the near surface deformed layer (NSDL) and its removal by polishing on the electrochemical activities of the alloy surface were evaluated and compared by the use of different modes of SECM. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were also employed to characterize the morphology of the surfaces. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS). The surface generation/tip collection (SG/TC) and competition modes of the SECM were used to study hydrogen gas (H2) evolution and oxygen reduction reactions, respectively. H2 evolution and oxygen reduction were more pronounced on the polished surfaces. The feedback mode of SECM was adopted to characterize the electrochemical activity of the polished surface that was previously corroded by immersion in a chloride-containing solution, in order to investigate the influence of the products formed on the active/passive domains. The precorroded surface and as-received surfaces revealed lower electrochemical activities compared with the polished surface showing that either the NSDL or corrosion products largely decreased the local electrochemical activities at the AA2098-T351 surfaces.  相似文献   

6.
We report on a modular approach for producing well-defined and electrochemically switchable surfaces on Si(100). The switching of these surfaces is shown to change a Si(100) surface from resistant to cell adsorption to promoting cell adhesion. The electrochemical conversion of the modified electrode surface is demonstrated by X-ray photoelectron spectroscopy, X-ray reflectometry, contact angle and cell adhesion studies.  相似文献   

7.
Cyclic voltammetric responses of electrochemically treated polycrystalline gold surfaces have been examined using Cu-UPD probe reactions (UPD-underpotential deposition). The treatment procedure used appears to induce preferential crystal orientation of the Au surface with a very small roughness factor and affords a simple method to obtain well-defined surfaces for electrochemical studies.  相似文献   

8.
Methyl-terminated, n-type, (111)-oriented Si surfaces were prepared via a two-step chlorination-alkylation method. This surface modification passivated the Si surface toward electrochemical oxidation and thereby allowed measurements of interfacial electron-transfer processes in contact with aqueous solutions. The resulting semiconductor/liquid junctions exhibited interfacial kinetics behavior in accord with the ideal model of a semiconductor/liquid junction. In contrast to the behavior of H-terminated Si(111) surfaces, current density vs. potential measurements of CH(3)-terminated Si(111) surfaces in contact with an electron acceptor having a pH-independent redox potential (methyl viologen(2+/+)) were used to verify that the band edges of the modified Si electrode were fixed with respect to changes in solution pH. The results provide strong evidence that the energetics of chemically modified Si interfaces can be fixed with respect to pH and show that the band-edge energies of Si can be tuned independently of pH-derived variations in the electrochemical potential of the solution redox species.  相似文献   

9.
Quantitative electrochemical SERS of flavin at a structured silver surface   总被引:1,自引:0,他引:1  
In situ electrochemical surface enhanced Raman spectra (SERS) for an immobilized monolayer of a flavin analogue (isoalloxazine) at nanostructured silver surfaces are reported. Unique in the present study, the flavin is not directly adsorbed at the Ag surface but is attached through a chemical reaction between cysteamine adsorbed on the Ag surface and methylformylisoalloxazine. Even though the flavin is held away from direct contact with the metal, strong surface enhancements are observed. The nanostructured silver surfaces are produced by electrodeposition through colloidal templates to produce thin (<1 microm) films containing close-packed hexagonal arrays of uniform 900 nm sphere segment voids. The sphere segment void (SSV) structured silver surfaces are shown to be ideally suited to in situ electrochemical SERS studies at 633 nm, giving stable, reproducible surface enhancements at a range of electrode potentials, and we show that the SER spectra are sensitive to subfemtomole quantities of immobilized flavin. Studies of the SER spectra as a function of the electrode potential show clear evidence for the formation of the flavin semiquinone at the electrode surface at cathodic potentials.  相似文献   

10.
The kinetics of reactions occurring at the gas-exposed surfaces of charged mixed ionic electronic conductors (MIECs) are examined from theoretical first principles. Analysis based on the classical electrochemical potential-transition state theory model reveals that the nature of the reactions is electrochemical in general. However, the influence of the surface potential on the reaction rate is opposite for adsorption and incorporation reactions. Two-dimensional finite volume models of an MIEC as working electrode in a half-cell configuration are presented. The results for a simple, two-step reduction process show that the effect of the surface potential on the rate of reactions is minimal for incorporation-limited reactions but more influential for adsorption-limited reactions. An erratum to this article is available at .  相似文献   

11.
Surface-enhanced Raman scattering (SERS) is a powerful tool for studying nanoscale molecule-metal interfaces across a range of electrochemical applications. SERS combines molecular-level information with a high degree of surface specificity, making it an ideal tool for understanding interfacial processes, from understanding how analytes and electrolytes organize near metal surfaces to following surface-mediated reactions in real time. However, because SERS relies on the excitation of localized surface plasmons, additional effects such as the production of hot charge carriers and photothermal heating can impact electrochemical SERS signals. These effects must also be considered when using SERS for quantitative electrochemical studies.  相似文献   

12.
A molecular approach to information storage employs redox-active molecules tethered to an electroactive surface. Attachment of the molecules to electroactive surfaces requires control over the nature of the tether (linker and surface attachment group). We have synthesized a collection of redox-active molecules bearing different linkers and surface anchor groups in free or protected form (hydroxy, mercapto, S-acetylthio, and Se-acetylseleno) for attachment to surfaces such as silicon, germanium, and gold. The molecules exhibit a number of cationic oxidation states, including one (ferrocene), two [zinc(II)porphyrin], three [cobalt(II)porphyrin], or four (lanthanide triple-decker sandwich compound). Electrochemical studies of monolayers of a variety of the redox-active molecules attached to Si(100) electrodes indicate that molecules exhibit a regular mode of attachment (via a Si-X bond, X = O, S, or Se), relatively homogeneous surface organization, and robust reversible electrochemical behavior. The acetyl protecting group undergoes cleavage during the surface deposition process, enabling attachment to silicon via thio or seleno groups without handling free thiols or selenols.  相似文献   

13.
The surface properties of PtM (M = Co, Ni, Fe) polycrystalline alloys are studied by utilizing Auger electron spectroscopy, low energy ion scattering spectroscopy, and ultraviolet photoemission spectroscopy. For each alloy initial surface characterization was done in an ultrahigh vacuum (UHV) system, and depending on preparation procedure it was possible to form surfaces with two different compositions. Due to surface segregation thermodynamics, annealed alloy surfaces form the outermost Pt-skin surface layer, which consists only platinum atoms, while the sputtered surfaces have the bulk ratio of alloying components. The measured valence band density of state spectra clearly shows the differences in electronic structures between Pt-skin and sputtered surfaces. Well-defined surfaces were hereafter transferred out from UHV and exposed to the acidic (electro)chemical environment. The electrochemical and post-electrochemical UHV surface characterizations revealed that Pt-skin surfaces are stable during and after immersion to an electrolyte. In contrast all sputtered surfaces formed Pt-skeleton outermost layers due to dissolution of transition metal atoms. Therefore, these three different near-surface compositions (Pt-skin, Pt-skeleton, and pure polycrystalline Pt) all having pure-Pt outermost layers are found to have different electronic structures, which originates from different arrangements of subsurface atoms of the alloying component. Modification in Pt electronic properties alters adsorption/catalytic properties of the corresponding bimetallic alloy. The most active systems for the electrochemical oxygen reduction reaction are established to be the Pt-skin near-surface composition, which also have the most shifted metallic d-band center position versus Fermi level.  相似文献   

14.
Multiwalled carbon nanotubes (MWNTs) covalently bound to monocrystalline p-type Si(111) surfaces have been prepared by attaching soluble amine-functionalized MWNTs onto a preassembled undecanoic acid monolayer using carbodiimide coupling. SEM analysis of these functionalized surfaces shows that the bound MWNTs are parallel to the surface rather than perpendicular. The voltammetric and electrochemical impedance spectroscopy measurements reveal that the electron transfer at the MWNT-modified surface is faster than that observed at a MWNT-free alkyl monolayer. We have also demonstrated that it is possible to prepare MWNT micropatterns using this surface amidation reaction and a "reagentless" UV photolithography technique. Following this approach, MWNT patterns surrounded by n-dodecyl areas have been produced and the local electrochemical properties of these micropatterned surfaces have been examined by scanning electrochemical microscopy. In particular, it is demonstrated that the MWNT patterns allow a faster charge transfer which is consistent with the results obtained for the uniformly modified surfaces.  相似文献   

15.
Catechols can strongly bind to a variety of substrates so as to functionalize the target surfaces by forming self-assembled monolayer. However, catecholic amine might self-oxidize and polymerize at high pH since the amine is susceptible to nucleophilic addition reaction that results in polymerized oligomers on surfaces. Therefore, the availability of amines for further derivation reaction would be restricted to a large extent. Herein, by controlling pH values to avoid self-oxidative polymerization, dopamine (DA) forms thin and surface-adherent monolayers onto a wide range of inorganic and organic materials, including mica, silica, and Au surface, allowing amination of the surfaces that resemble commercially used aminosilanization. The self-assembly process was traced by surface topography and elemental composition analysis using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), and electrochemical characterization (electrochemical impedance spectroscopy and cyclic voltammetry measurements). Then, the aminated surfaces were used for secondary derivation reactions to create a variety of ad-layers, including patterned streptavidin through specific binding interaction with biotin and ferrocene surface via amidation reaction. The surface and interface properties of the obtained surfaces were tested by electrochemical measurements.  相似文献   

16.
A novel approach to reproducibly generating randomly rough surfaces over large areas and generating surface roughness gradients is presented. By tuning the electrochemical deposition potential for silver onto an electrode, the island nucleation density can be systematically varied resulting in thin films of different roughness. We find that the potential range that significantly influences the surface roughness also corresponds to a reaction/mixed-controlled deposition regime. The roughness can be replicated onto other moldable materials, thus enabling future studies involving the effect of surface roughness.  相似文献   

17.
We report the first directed adsorption of Photosystem I (PSI) on patterned surfaces containing discrete regions of methyl- and hydroxyl-terminated self-assembled monolayers (SAMs) on gold. SAM and PSI patterns are characterized by scanning electrochemical microscopy (SECM). The insulating protein complex layer blocks the electron transfer of the SECM mediator, thereby reducing the electrochemical current significantly. Uniformly and densely packed adsorbed protein layers are observed with SECM. Pattern images correlate with our previous studies where we showed that low-energy surfaces (e.g., CH3-terminated) inhibit PSI adsorption in the presence of Triton X-100, whereas high-energy surfaces (e.g., OH-terminated) enable adsorption. Therefore, a SAM pattern with alternating methyl and hydroxyl surface regions allows PSI adsorption only on the hydroxyl surface, and this is demonstrated in the resulting SECM images.  相似文献   

18.
Well-ordered, compact, self-assembled monolayers (SAMs) of hexyl and dodecyl diselenides have been formed on oriented (111) gold surfaces. Monolayer formation has been effected by adsorption from neat diselenides as well as millimolar solutions of diselenides in alcohol. The monolayer formation is confirmed using electrochemical quartz crystal microbalance studies. The stability and permeability of the monolayers at various temperatures have been probed using reflection absorption infrared spectroscopy (RAIRS) and electrochemistry. The RAIRS studies in the dry state show the formation of highly ordered, compact structures when adsorbed from neat compounds compared to the monolayers adsorbed in the presence of alcohol. The monolayers adsorbed from neat diselenide are quite stable as a function of temperature irrespective of the chain length. The electrochemical studies based on the blocking behavior of the monolayers toward electron transfer between a diffusing species and the electrode surface reflect the stability and the compactness of the structure. The results point out that the presence of solvent molecules during the SAM formation hinders the organization of the monolayer structure, especially in the case of short-chain diselenide monolayers.  相似文献   

19.
阐述了超高真空和电化学联合技术的性能,这种技术是获取电极-溶液界面微观信息的一种手段.给出了有关样品制备和表面分析技术在实验中的方方面面,并选取了一些单晶电极表面研究的最近成果--电化学池中重构的Au(100)-hex和Pt(100)-hex单晶电极的相转变以及Pt在Ru(0001)和Ru(1010)表面,RuO2(100)在Ru(0001)上外延生长的结构研究.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号