首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies on the subtle effects and roles of polyatomic anions in the self-assembly of a series of AgX complexes with 2,4'-Py(2)S (X(-) = NO(3)(-), BF(4)(-), ClO(4)(-), PF(6)(-), CF(3)CO(2)(-), and CF(3)SO(3)(-); 2,4'-Py(2)S = 2,4'-thiobis(pyridine)) have been carried out. The formation of products appears to be primarily associated with a suitable combination of the skewed conformers of 2,4'-Py(2)S and a variety of coordination geometries of Ag(I) ions. The molecular construction via self-assembly is delicately dependent upon the nature of the anions. Coordinating anions afford the 1:1 adducts [Ag(2,4'-Py(2)S)X] (X(-) = NO(3)(-) and CF(3)CO(2)(-)), whereas noncoordinating anions form the 3:4 adducts [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Each structure seems to be constructed by competition between pi-pi interactions of 2,4'-Py(2)S spacers vs Ag.X interactions. For ClO(4)(-) and PF(6)(-), an anion-free network consisting of linear Ag(I) and trigonal Ag(I) in a 1:2 ratio has been obtained whereas, for the coordinating anions NO(3)(-) and CF(3)CO(2)(-), an anion-bridged helix sheet and an anion-bridged cyclic dimer chain, respectively, have been assembled. For a moderately coordinating anion, CF(3)SO(3)(-), the 3:4 adduct [Ag(3)(2,4'-Py(2)S)(4)](CF(3)SO(3))(3) has been obtained similarly to the noncoordinating anions, but its structure is a double strand via both face-to-face (pi-pi) stackings and Ag.Ag interactions, in contrast to the noncoordinating anions. The anion exchanges of [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = BF(4)(-), ClO(4)(-), and PF(6)(-)) with BF(4)(-), ClO(4)(-), and PF(6)(-) in aqueous media indicate that a [BF(4)(-)] analogue is isostructural with [Ag(3)(2,4'-Py(2)S)(4)]X(3) (X(-) = ClO(4)(-) and PF(6)(-)). Furthermore, the anion exchangeability for the noncoordinating anion compounds and the X-ray data for the coordinating anion compounds establish the coordinating order to be NO(3)(-) > CF(3)CO(2)(-) > CF(3)SO(3)(-) > PF(6)(-) > ClO(4)(-) > BF(4)(-).  相似文献   

2.
A novel, totally asymmetrical tripodal 2,3',4"-tetraamine ligand, N((CH2)2NH2)((CH2)3NH2)((CH2)4NH2), epb, has been synthesized. In the presence of copper(II) and nickel(II) ions it condenses with 2,6-diacetylpyridine in 1:1 ethanol-water solution, producing some new CR-type complexes with a pendant primary amino group. The X-ray crystal structure of the resulting copper(II) complex, [Cu(3,4(2)-CR)](PF6)2 (1), and two other related complexes, [Cu(2,4(2)-CR)](ClO4)2 (2) and [Cu(3,3(2)-CR)](ClO4)2 (3), are reported. Crystal data: complex 1, monoclinic, P2(1)/n, a = 8.366(3) A, b = 15.549(3) A, c = 20.283(2) A, beta = 98.73(2) degrees, V = 2607.8(11) A3, Z = 4, R1 = 0.0621, wR2 = 0.1615; complex 2, monoclinic, P2(1)/c, a = 7.981(10) A, b = 18.882(3) A, c = 15.185(3) A, beta = 96.40(2) degrees, V = 2275.7(6) A3, Z = 4, R1 = 0.0773, wR2 = 0.1635; complex 3, monoclinic, P2(1)/n, a = 7.8764(10) A, b = 15.361(2) A, c = 19.370(2) A, beta = 100.330(10) degrees, V = 2305.7(5) A3, Z = 4, R1 = 0.0537, wR2 = 0.1397. In all of these, copper atoms are bonded to four nitrogens of a macrocyclic ring and a nitrogen of the pendant arm. The arrangements are slightly distorted square-pyramidal in which the primary amino groups occupy apical positions and have the longest Cu-N distances. For all isomers, copper(II) ions are somewhat above the plane of the imino-pyridine system of the macrocylic ring in the direction of the pendant coordinated primary amino group.  相似文献   

3.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

4.
Dong YB  Wang HY  Ma JP  Shen DZ  Huang RQ 《Inorganic chemistry》2005,44(13):4679-4692
Two new bent bis(cyanophenyl)oxadiazole ligands, 2,5-bis(4-cyanophenyl)-1,3,4-oxadiazole (L7) and 2,5-bis(3-cyanophenyl)-1,3,4-oxadiazole (L8), were synthesized. The coordination chemistry of these ligands with various Ag(I) salts has been investigated. Seven new coordination polymers, namely, {[Ag(L7)(H2O)]ClO4}n) (1) (triclinic, P1, a = 9.342(4) A, b = 9.889(4) A, c = 10.512(4) A, alpha = 68.978(6) degrees, beta = 78.217(6) degrees, gamma = 81.851(7) degrees, Z = 2), {[Ag(L7)]SO3CF3}n (2) (monoclinic, P2(1)/n, a = 7.559(2) A, b = 23.739(6) A, c = 10.426(3) A, beta = 108.071(4) degrees, Z = 4), {[Ag(L8)]BF4 x 0.5(C6H6) x H2O}n (3) (triclinic, P1, a = 7.498(3) A, b = 10.649(4) A, c = 13.673(5) A, alpha = 98.602(5) degrees, beta = 100.004(5) degrees, gamma =110.232(5) degrees, Z = 2), {[Ag(L8)SbF6] x H2O}n (4) (triclinic, P1, a = 8.2621(9) A, b = 10.6127(12) A, c = 13.3685(15) A, alpha = 98.012(2) degrees, beta = 106.259(2) degrees, gamma = 112.362(2) degrees, Z = 2), {[Ag2(L8)2(SO3CF3)] x H2O}n (5) (triclinic, P1, a = 10.713(4) A, b = 13.449(5) A, c = 15.423(5) A, alpha = 65.908(5) degrees, beta = 74.231(5) degrees, gamma = 83.255(5) degrees, Z = 2), {[Ag2(L8)(C6H6)(ClO4)] x ClO4}n (6) (monoclinic, P2(1)/n, a = 6.9681(17) A, b = 20.627(5) A, c = 17.437(4) A, beta = 95.880(4) degrees, Z = 4), and {[Ag2(L8)(H2PO4)2]}n (7) (triclinic, P1, a = 7.956(2) A, b = 9.938(3) A, c = 14.242(4) A, alpha = 106.191(4) degrees, beta = 97.322(4) degrees, gamma = 107.392(4) degrees, Z = 1), were obtained by the combination of L7 and L8 with Ag(I) salts in a benzene/methylene chloride mixed-solvent system and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the luminescence and electrical conductance properties of compounds 1-6 and the host-guest chemistry of compound 3 were investigated.  相似文献   

5.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

6.
New complexes of Rh(III), Ru(II), and Pd(II) with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) and its analogues have been prepared. The reaction of RhCl(3).nH(2)O with tpen is slow and allows one to isolate the products of three consecutive substitution steps: Rh(2)Cl(6)(tpen) (1), cis-[RhCl(2)(eta(4)-tpen)](+) (2), and [RhCl(eta(5)-tpen)](2+) (3). In acetonitrile the reaction stops at the step of the formation of cis-[RhCl(2)(eta(4)-tpen)](+), whereas [RhCl(eta(5)-tpen)](2+) is the final product of the further reaction in ethanol. Fully chelated [Rh(tpen)](3+) could not be obtained. Bis(acetylacetonato)palladium(II), Pd(acac)(2), reacts with tpen and its analogues, N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-propanediamine (tptn) and N,N,N',N'-tetrakis(2-pyridylmethyl)-(R)-1,2-propylenediamine (R-tppn), to give [Pd(eta(4)-tpen)](2+) (4), [Pd(eta(4)-tppn)](2+) (5), and [Pd(eta(4)-tptn)](2+) (6), respectively. Two pyridyl arms remain uncoordinated in these cases. The formation of unstable Pd(III) complexes from these Pd(II) complexes in solution was suggested on the basis of electrochemical measurements. Ruthenium(III) trichloride, RuCl(3).nH(2)O, is reduced to give a Ru(II) complex with fully coordinated tpen, [Ru(tpen)](2+) (7). The same product was obtained in a more straightforward reaction of Ru(II)Cl(2)(dimethyl sulfoxide)(4) with tpen. Electrochemical studies showed a quasi-reversible [Ru(tpen)](2+/3+) couple for [7](ClO(4))(2) (E(1/2) = 1.05 V vs Ag/AgCl). Crystal structures of [2](PF(6)).2CH(3)CN, [3](PF(6))(2).CH(3)CN, [6](ClO(4))(2), and [7](ClO(4))(2).0.5H(2)O were determined. Crystal data: [2](PF(6)).2CH(3)CN, monoclinic, C2, a = 16.974(4) A, b = 8.064(3) A, c = 13.247(3) A, beta = 106.37(2) degrees, V = 1739.9(8) A(3), Z = 2; [3](PF(6))(2).CH(3)CN, triclinic, P1, a = 11.430(1) A, b = 19.234(3) A, c = 8.101(1) A, alpha = 99.43(1) degrees, beta = 93.89(1) degrees, gamma = 80.10(1) degrees, V = 1729.3(4) A(3), Z = 2; [6](ClO(4))(2), orthorhombic, Pnna, a = 8.147(1) A, b = 25.57(1) A, c = 14.770(4) A, V = 3076(3) A(3), Z = 4; [7](ClO(4))(2).0.5H(2)O, monoclinic, P2(1)/c, a = 10.046(7) A, b = 19.049(2) A, c = 15.696(3) A, beta = 101.46(3) degrees, V = 2943(2) A(3), Z = 4.  相似文献   

7.
3,3-Dichloro-N-p-methoxyphenyl-4-(2-phenylstryl)-2-azetidinone (C22H15Cl2NO2) was studied by X-Ray analysis, which indicated a monoclinic space group, P2(1)/c, with a = 9.619(5), b = 13.879(4), c = 14.161(5)A, beta = 100.16(3)degrees, V = 1860.8(13)A3, Z = 4, Dc = 1.414 g cm(-3), micro(Mo Kalpha) = 0.366 mm(-1) and F000 = 816. The structure was solved by direct methods and refined to R = 0.041 for 4026 reflections [I > 2sigma(I). The beta-lactam ring (2-azetidinone) has antimicrobial affects. The substituents of the methoxyphenyl and phenyl substituents do not change the activity property of the beta-lactam ring, and the activity properties depend on the planarity of the beta-lactam ring.  相似文献   

8.
Dong YB  Zhang Q  Wang L  Ma JP  Huang RQ  Shen DZ  Chen DZ 《Inorganic chemistry》2005,44(19):6591-6608
Two new bent oxadiazole bridging benzoacetylene ligands 2,5-bis(4-ethynylphenyl)-1,3,4-oxadiazole (L9) and 2,5-bis(3-ethynylphenyl)-1,3,4-oxadiazole (L10) were synthesized. The coordination chemistry of them with various inorganic Ag(I) salts has been investigated. Seven new coordination polymers were prepared by solution reactions and fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. [Ag2(L9)](SO3CF3)2 (1) (triclinic, P; a =10.292(4), b = 10.794(4), c = 11.399(5) A; alpha = 98.894(5), beta = 102.360(6), gamma = 90.319(5) degrees ; Z = 2), [Ag(L9)]SbF6 (2) (orthorhombic, Cmca; a = 19.059(9), b = 12.922(6), c = 15.609(7) A; Z = 8), [Ag(L9)]BF4 (3) (orthorhombic, Cmca; a = 19.128(3), b = 12.6042(18), c = 28.003(4) A; Z = 16), [Ag(L9)]ClO4 (4) (monoclinic, P2(1)/c; a = 8.5153(16), b = 19.722(4), c = 10.320(2) A; beta = 105.307(3) degrees ; Z = 4), [Ag(L10)]SO3CF3 (5) (triclinic, P; a = 9.0605(13), b = 10.4956(15), c = 10.8085(16) A; alpha = 101.666(2), beta = 109.269(2), gamma = 100.944(2) degrees ; Z = 2), [Ag(L10)(H2O)(0.5)]BF4.0.5H2O (6) (monoclinic, C2/m; a = 32.180(6), b = 17.027(3), c = 8.1453(15) A; beta = 102.541(3) degrees ; Z = 8), and {[Ag2(L10)2(H2O)](ClO4)2}.o-xylene (7) (monoclinic, P2(1)/c; a = 8.1460(10), b = 17.326(2), c = 30.345(4) A; beta = 97.71 degrees ; Z = 4) were obtained by the combination of L9 and L10 with various Ag(I) salts in a benzene/methylene chloride mixed solvent system. In addition, the luminescent and electrical conductive properties of these new compounds were investigated.  相似文献   

9.
The coordination chemistry of the oxadiazole-containing rigid bidentate ligands 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L1), 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L2), and 2,5-bis(3-aminophenyl)-1,3,4-oxadiazole (L3) with inorganic Ag(I) salts has been investigated. Four new coordination polymers (1, 2, 3, and 5) and one new bimetallic macrocyclic supramolecular complex (4) were synthesized from solution reactions of L1-L3 with inorganic Ag(I) salts, respectively. Compounds [[Ag(L1)]SbF(6)](n) (1) (1, monoclinic, P2(1)/c, a = 6.6846(4) A, b = 27.1113(15) A, c = 8.6802(5) A, beta = 94.1080(10) degrees, Z = 4) and [[Ag(L1)]PF(6)](n) (2) (2, monoclinic, P2(1)/c, a = 6.6753(3) A, b = 27.2824(14) A, c = 8.2932(4) A, beta = 94.6030(10) degrees, Z = 4) were obtained from the reactions of L1 with AgSbF(6) and AgPF(6) in a CH(2)Cl(2)/CH(3)OH mixed solvent system, respectively. Compounds 1 and 2 are isostructural and feature a novel two-dimensional zeolite-like net with two different individual rings. [[Ag(L2)]SbF(6)](n) (3) (3, monoclinic, P2(1)/c, a = 5.5677(3) A, b = 17.3378(9) A, c = 15.6640(8) A, beta = 94.4100(10) degrees, Z = 2) and [Ag(2)(L2)(2)](SbF(6))(2) (4) (4, triclinic, P1, a = 8.7221(5) A, b = 9.2008(6) A, c = 10.7686(7) A, alpha = 70.6270(10) degrees, beta = 75.7670(10) degrees, gamma = 73.7560(10) degrees, Z = 1) were obtained from one-pot reaction of L2 with AgSbF(6) in a CH(2)Cl(2)/CH(3)OH mixed solvent system. Compound 3 features a one-dimensional chain pattern, while compound 4 adopts a novel bimetallic macrocyclic structural motif which consists of Ag(2)(L2)(2) ringlike units (crystallographic dimensions, 8.06 x 7.42 A(2)). [[Ag(L3)]SO(3)CF(3)](n) (5) is generated from L3 and AgSO(3)CF(3) in a CH(2)Cl(2)/CH(3)OH mixed solvent system and crystallizes in the unusual space group Pbcn, with a = 9.8861(5) A, b = 20.2580(10) A, c = 17.5517(8) A, Z = 8. It adopts novel two-dimensional sheets that are cross-linked to each other by strong interlayer N-H...O hydrogen bonding interactions into a novel H-bonded three-dimensional network.  相似文献   

10.
Reactions of the unsymmetrical phenol ligand 2-(bis(2-pyridylmethyl)aminomethyl)-6-((2-pyridylmethyl)(benzyl)aminomethyl)-4-methylphenol with Mn(OAc)(2).4H(2)O or Mn(H(2)O)(6)(ClO(4))(2) in the presence of NaOBz affords the dimanganese(II) complexes 1(CH(3)OH), [Mn(2)(L)(OAc)(2)(CH(3)OH)](ClO(4)), and 2(H(2)O), [Mn(2)(L)(OBz)(2)(H(2)O)](ClO(4)), respectively. On the other hand, reaction of the ligand with hydrated manganese(III) acetate furnishes the mixed-valent derivative 3(H(2)O), [Mn(2)(L)(OAc)(2)(H(2)O)](ClO(4))( 2). The three complexes have been characterized by X-ray crystallography. 1(CH(3)OH) crystallizes in the monoclinic system, space group P2(1)/c, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 2(H(2)O) crystallizes in the monoclinic system, space group P2(1)/n, with a = 10.9215(6) A, b = 20.2318(12) A, c = 19.1354(12) A, alpha = 90 degrees, beta = 97.5310(10) degrees, gamma = 90 degrees, V = 4191.7 A(3), and Z = 4. 3(H(2)O) crystallizes in the monoclinic system, space group P2(1)/c, with a = 11.144(6) A, b = 18.737(10) A, c = 23.949(13) A, alpha = 90 degrees, beta = 95.910(10) degrees, gamma = 90 degrees, V = 4974(5) A(3), and Z = 4. Magnetic measurements revealed that the three compounds exhibit very similar magnetic exchange interactions -J = 4.3(3) cm(-)(1). They were used to establish tentative magneto-structural correlations which show that for the dimanganese(II) complexes -J decreases when the Mn-O(phenoxo) distance increases as expected from orbital overlap considerations. For the dimanganese(II,III) complexes, crystallographic results show that the Mn(II)-O(phenoxo) and Mn(III)-O(phenoxo) bond lengths are inversely correlated. An interesting magneto-structural correlation is found between -J and the difference between these bond lengths, delta(Mn)(-)(O) = d(Mn)()II(-)(O) - d(Mn)()III(-)(O): the smaller this difference, the larger -J. Electrochemical studies show that the mixed-valence state is favored in 1-3 by ca. 100 mV with respect to analogous complexes of symmetrical ligands, owing to the asymmetry of the electron density as found in the analogous diiron complexes.  相似文献   

11.
Reaction between Ag(I) salts and the three isomers of (aminomethyl)pyridines, viz., 2-amp, 3-amp, and 4-amp, lead to either discrete or polymeric (1-D and 2-D) structures influenced by anions and closed shell Ag.Ag contacts. Characterization data for Ag(2-amp)BF(4) (1) follow: monoclinic, space group C2/c, with a = 16.788(2) A, b = 11.5719(6) A, c = 11.3864(7) A, beta = 123.671(8) degrees, and Z = 8. For Ag(2)(2-amp)(3)(PF(6))(2) (2): monoclinic, space group P2(1)/a, with a = 10.029(7) A, b = 20.291(12) A, c = 13.907(6) A, beta = 95.38(5) degrees, and Z = 4. For Ag(2)(3-amp)(3)(PF(6))(2) (4): triclinic, space group P1, with a = 10.4482(7) A, b = 11.1468(9) A, c = 12.2720(11) A, alpha = 81.018(7) degrees, beta = 80.668(6) degrees, gamma = 80.977(6) degrees, and Z = 2. For Ag(4-amp)BF(4).0.75CH(3)CN (5): orthorhombic, space group C222(1), with a = 9.272(2) A, b = 16.164(12) A, c = 27.851(2) A, and Z = 8. For Ag(4-amp)PF(6) (6): monoclinic, space group P2(1)/m, with a = 5.2089(7) A, b = 14.3950(17) A, c = 7.0149(14) A, beta = 96.538(14) degrees, and Z = 2. While Ag(I) is 2-coordinate in 1, 5 and 6, it shows 3-coordination in 2 and 4. Compound 1 consists of a 1-D polymeric cation chain with interchain Ag...Ag contacts and the anions sitting on the edges of the chains. The dication in 2 is held in the form of a circular helicate by closed shell Ag...Ag interactions. Compound 4 generates a 2-D network with channels big enough to accommodate the anions. Compound 5 is a 2-D chiral network of chains connected by Ag...Ag contacts. Compound 6 shows a simple 1-D chain structure with an alternating arrangement of cationic chains and anions.  相似文献   

12.
The group 13 dichlorides of formula Ar'MCl2 [Ar' = 8-(dimethylamino)-1-naphthyl (8-(Me2N)C10H6)], M = Al (1), Ga (2), and In (3), have been prepared via the salt elimination reaction of 1 equiv of Ar'Li with MCl3 in toluene solution at -78 degrees C. The reaction of 1 with LiAlH4 in diethyl ether solution at -78 degrees C produced the dihydride [Ar'AlH2]2 (4). The X-ray crystal structures of 1-4 have been determined and show that 1 and 2 are monomeric while 3 and 4 are dimeric in the solid state. The reaction of 1 with RLi in toluene solution at -78 degrees C results in ligand redistribution and formation of Ar'2AlR (R = Me (5), t-Bu (6)). The chloride analogue of 5 and 6, Ar'2AlCl (7), can be prepared directly from the reaction of 2 equiv of Ar'Li with AlCl3 in toluene solution at -78 degrees C. The homoleptic derivative Ar'3Al (8) was obtained when 3 equiv of Ar'Li was employed. Crystal data for 1: monoclinic, space group P2(1), a = 6.534(1) A, b = 10.801(1) A, c = 9.631(2) A, beta = 105.57(2) degrees, V = 654.8(2) A3, Z = 2, R = 0.0453. Crystal data for 2: monoclinic, space group P2(1), a = 6.552(2) A, b = 10.833(2) A, c = 9.601(2) A, beta = 106.05(2) degrees, V = 654.9(3) A3, Z = 2, R = 0.0609. Crystal data for 3: monoclinic, space group P2(1)/c, a = 7.401(2) A, b = 15.746 A, c = 10.801(4) A, beta = 92.37(3) degrees, V = 1257.6(7) A3, Z = 2, R = 0.0712. Crystal data for 4: monoclinic, space group P2(1)/c, a = 13.343(2) A, b = 11.228(2) A, c = 7.505(1) A, beta = 100.64(1) degrees, V = 1105.0(4) A3, Z = 4, R = 0.0560.  相似文献   

13.
Dong YB  Geng Y  Ma JP  Huang RQ 《Inorganic chemistry》2005,44(6):1693-1703
One new conjugated symmetric fulvene ligand L1 and two new unsymmetric fulvene ligands L2 and L3 were synthesized. Five new supramolecular complexes, namely Ag2(L1)3(SO3CF3)3 (1) (1, monoclinic, P2(1)/c; a = 12.702(3) A, b = 26.118(7) A, c = 13.998(4) A, beta = 96.063(4) degrees, Z = 4), [Ag(L1)]ClO4 (2) (monoclinic, C2/c; a = 17.363(2) A, b = 13.2794(18) A, c = 13.4884(18) A, beta = 100.292(2) degrees, Z = 8), [Ag(L1)(C6H6)SbF6] x 0.5C6H6 x H2O (3) (monoclinic, P2(1)/c; a = 6.8839(11) A, b = 20.242(3) A, c = 18.934(3) A, beta = 91.994(3) degrees, Z = 4), Ag(L2)(SO3CF3) (4) (triclinic, P1; a = 8.629(3) A, b = 10.915(3) A, c = 11.178(3) A, alpha = 100.978(4) degrees, beta = 91.994(3) degrees, gamma = 105.652(4) degrees, Z = 2), and Ag(L3)(H2O)(SO3CF3) (5) (triclinic, P1; a = 8.914(5) A, b = 10.809(6) A, c = 11.283(6) A, alpha = 69.255(8) degrees, beta = 87.163(9) degrees, gamma = 84.993(8) degrees, Z = 2) were obtained through self-assembly based on these three new fulvene ligands in a benzene/toluene mixed-solvent system. Compounds 1-5 have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The results indicate that the coordination chemistry of new fulvene ligands is versatile. They can adopt either cis- or trans-conformation to bind soft acid Ag(I) ion through not only the terminal -CN and furan functional groups but also the fulvene carbon atoms into organometallic coordination polymers or discrete complexes. In addition, the luminescent properties of L1-L3 and their Ag(I) complexes were investigated preliminarily in EtOH and solid state.  相似文献   

14.
Copper(I) and copper(II) complexes possessing a series of related ligands with pyridyl-containing donors have been investigated. The ligands are tris(2-pyridylmethyl)amine (tmpa), bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine (pmea), bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine (pmap), and tris[2-(2-pyridyl)ethyl]amine (tepa). The crystal structures of the protonated ligand H(tepa)ClO(4), the copper(I) complexes [Cu(pmea)]PF(6) (1b-PF(6)), [Cu(pmap)]PF(6) (1c-PF(6)), and copper(II) complexes [Cu(pmea)Cl]ClO(4).H(2)O (2b-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4).H(2)O (2c-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4) (2c-ClO(4)), and [Cu(pmea)F](2)(PF(6))(2) (3b-PF(6)) were determined. Crystal data: H(tepa)ClO(4), formula C(21)H(25)ClN(4)O(4), triclinic space group P1, Z = 2, a = 10.386(2) A, b = 10.723(2) A, c = 11.663(2) A, alpha = 108.77(3) degrees, beta = 113.81(3) degrees, gamma = 90.39(3) degrees; 1b-PF(6), formula C(19)H(20)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 14.413(3) A, b = 16.043(3) A, c = 18.288(4) A, alpha = beta = gamma = 90 degrees; (1c-PF(6)), formula C(20)H(22)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 13.306(3) A, b = 16.936(3) A, c = 19.163(4) A, alpha = beta = gamma = 90 degrees; 2b-ClO(4).H(2)O, formula C(19)H(22)Cl(2)CuN(4)O(5), triclinic space group P1, Z = 4, a = 11.967(2) A, b = 12.445(3) A, c = 15.668(3) A, alpha = 84.65(3) degrees, beta = 68.57(3) degrees, gamma = 87.33(3) degrees; 2c-ClO(4).H(2)O, formula C(20)H(24)Cl(2)CuN(4)O(5), monoclinic space group P2(1)/c, Z = 4, a = 11.2927(5) A, b = 13.2389(4) A, c = 15.0939(8) A, alpha = gamma = 90 degrees, beta = 97.397(2) degrees; 2c-ClO(4), formula C(20)H(22)Cl(2)CuN(4)O(4), monoclinic space group P2(1)/c, Z = 4, a = 8.7682(4) A, b = 18.4968(10) A, c = 13.2575(8) A, alpha = gamma = 90 degrees, beta = 94.219(4) degrees; 3b-PF(6), formula [C(19)H(20)CuF(7)N(4)P](2), monoclinic space group P2(1)/n, Z = 2, a = 11.620(5) A, b = 12.752(5) A, c = 15.424(6) A, alpha = gamma = 90 degrees, beta = 109.56(3) degrees. The oxidation of the copper(I) complexes with dioxygen was studied. [Cu(tmpa)(CH(3)CN)](+) (1a) reacts with dioxygen to form a dinuclear peroxo complex that is stable at low temperatures. In contrast, only a very labile peroxo complex was observed spectroscopically when 1b was reacted with dioxygen at low temperatures using stopped-flow kinetic techniques. No dioxygen adduct was detected spectroscopically during the oxidation of 1c, and 1d was found to be unreactive toward dioxygen. Reaction of dioxygen with 1a-PF(6), 1b-PF(6), and 1c-PF(6) at ambient temperatures leads to fluoride-bridged dinuclear copper(II) complexes as products. All copper(II) complexes were characterized by UV-vis, EPR, and electrochemical measurements. The results manifest the dramatic effects of ligand variations and particularly chelate ring size on structure and reactivity.  相似文献   

15.
This article presents a series of silver(I) coordination networks based upon nonchelating bidentate thioether ligands. Frameworks using AgOTs as the silver(I) starting material form two-dimensional frameworks and are quite stable as shown by differential scanning calorimetry/thermogravimetric analysis (DSC/TGA) data. The networks are sufficiently robust as to maintain the same layered motif when the basic skeleton of the ligand is sequentially derivatized with -OEt, OBu, and OHex groups. Crystal structures of the AgOTs complexes of the underivatized and bis(hexoxy) derivatives, compounds 5 and 8, respectively, are presented as well as powder X-ray diffraction (PXRD) data of the other complexes. For 5, C20H20S3O3Ag, crystal data are as follows: monoclinic, space group P2(1)/n, a = 11.8117(5) A, b = 7.8813(5) A, c = 22.3316(10) A, beta = 102.245(5) degrees, V = 2031.6(2) A(3), Z = 4. For 8, C30H44S3O6Ag, crystal data are as follows: triclinic, space group Ponebar a = 8.445(4) A, b = 10.855(5) A, c = 19.308(9) A, alpha = 84.53(1) degrees, beta = 78.76(1) degrees, gamma = 68.43(1) degrees V = 1613.9(13) A(3), Z = 2. Changing the silver(I) starting material to AgPF6 results in a shift to a one-dimensional structure, 9, as shown by X-ray crystallography and in highly compromised stability. For 9, C14H16S2N2PF6Ag, crystal data are as follows: monoclinic, space group P2/n, a = 11.9658(11) A, b = 3.9056(4) A, c = 19.6400(18) A, beta = 92.87(1) degrees, V = 916.70(15) A(3), Z = 4.  相似文献   

16.
The reaction between aryl aldehydes, the macrocyclic ligand 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine (L1), and NaBH3CN produces the corresponding benzyl-substituted ligands in good yield. Copper(II) complexes of the ligands derived from salicylaldehyde (L2), p-hydroxybenzaldehyde (L4), and p-carboxybenzaldehyde (L5) were structurally characterized: [CuL2](ClO4)2.3H2O (monoclinic, P2(1)/c, a = 11.915(6) A, b = 13.861(2) A, c = 17.065(8) A, beta = 102.14(2) degrees, Z = 4); [CuL4](ClO4)2 (monoclinic, P2(1)/n, a = 9.550(3) A, b = 17.977(2) A, c = 14.612(4) A, beta 96.76(1) degrees, Z = 4), and [CuL4](ClO4)2 (monoclinic, P2(1)/n, a = 9.286(2) A, b = 11.294(1) A, c = 23.609(8) A, beta 93.68(1) degrees, Z = 4). Conjugation of several CuII complexes to a protein (bovine serum albumin) has been pursued with a view to the application of these macrocycles as bifunctional chelating agents in radioimmunotherapy.  相似文献   

17.
A series of copper(II) complexes with tripodal polypyridylmethylamine ligands, such as tris(2-pyridylmethyl)amine (tpa), ((6-methyl-2-pyridyl)methyl)bis(2-pyridylmethyl)amine (Me(1)tpa), bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine (Me(2)tpa), and tris((6-methyl-2-pyridyl)methyl)amine (Me(3)tpa), have been synthesized and characterized by X-ray crystallography. [Cu(H(2)O)(tpa)](ClO(4))(2) (1) crystallized in the monoclinic system, space group P2(1)/a, with a = 15.029(7) ?, b = 9.268(2) ?, c = 17.948(5) ?, beta = 113.80(3) degrees, and Z = 4 (R = 0.061, R(w) = 0.059). [CuCl(Me(1)tpa)]ClO(4) (2) crystallized in the triclinic system, space group P&onemacr;, with a = 13.617(4) ?, b = 14.532(4) ?, c = 12.357(4) ?, alpha = 106.01(3) degrees, beta = 111.96(2) degrees, gamma = 71.61(2) degrees, and Z = 4 (R = 0.054, R(w) = 0.037). [CuCl(Me(2)tpa)]ClO(4) (3) crystallized in the monoclinic system, space group P2(1)/n, with a = 19.650(4) ?, b = 13.528(4) ?, c = 8.55(1) ?, beta = 101.51(5) degrees, and Z = 4 (R = 0.071, R(w) = 0.050). [CuCl(Me(3)tpa)][CuCl(2)(Me(3)tpa)]ClO(4) (4) crystallized in the monoclinic system, space group P2(1)/a, with a = 15.698(6) ?, b = 14.687(7) ?, c = 19.475(4) ?, beta = 97.13(2) degrees, and Z = 4 (R = 0.054, R(w) = 0.038). All the Cu atoms of 1-4 have pentacoordinate geometries with three pyridyl and one tertiary amino nitrogen atoms, and a chloride or aqua oxygen atom. Nitrite ion coordinated to the Cu(II) center of Me(1)tpa, Me(2)tpa, and Me(3)tpa complexes with only oxygen atom to form nitrito adducts. The cyclic voltammograms of [Cu(H(2)O)(Me(n)()tpa)](2+) (n = 0, 1, 2, and 3) in the presence of NO(2)(-) in H(2)O (pH 7.0) revealed that the catalytic activity for the reduction of NO(2)(-) increases in the order Me(3)tpa < Me(2)tpa < Me(1)tpa < tpa complexes.  相似文献   

18.
Mono- and dicopper(II) complexes of a series of potentially bridging hexaamine ligands have been prepared and characterized in the solid state by X-ray crystallography. The crystal structures of the following Cu(II) complexes are reported: [Cu(HL3)](ClO4)(3), C11H31Cl3CuN6O12, monoclinic, P2(1)/n, a = 8.294(2) A, b = 18.364(3) A, c = 15.674(3) A, beta = 94.73(2) degrees, Z = 4; ([Cu2(L4)(CO3)](2))(ClO4)(4).4H2O, C40H100Cl4Cu4N12O26, triclinic, P1, a = 9.4888(8) A, b = 13.353(1) A, c = 15.329(1) A, alpha = 111.250(7) degrees, beta = 90.068(8) degrees, gamma = 105.081(8) degrees, Z = 1; [Cu2(L5)(OH2)(2)](ClO4)(4), C13H36Cl4Cu2N6O18, monoclinic, P2(1)/c, a = 7.225(2) A, b = 8.5555(5) A, c = 23.134(8) A, beta = 92.37(1) degrees, Z = 2; [Cu2(L6)(OH2)(2)](ClO4)(4).3H2O, C14H44Cl4Cu2N6O21, monoclinic, P2(1)/a, a = 15.204(5) A, b = 7.6810(7) A, c = 29.370(1) A, beta = 100.42(2) degrees, Z = 4. Solution spectroscopic properties of the bimetallic complexes indicate that significant conformational changes occur upon dissolution, and this has been probed with EPR spectroscopy and molecular mechanics calculations.  相似文献   

19.
A homologous series of dinuclear compounds with the bridging ligand 2-(2-pyridyl)-1,8-naphthyridine (pynp) has been prepared and characterized by X-ray crystallographic and spectroscopic methods. [Mo(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x 3CH(3)CN (1) crystallizes in the monoclinic space group P2(1)/c with a = 15.134(5) A, b = 14.301(6) A, c = 19.990(6) A, beta = 108.06(2) degrees, V = 4113(3) A(3), and Z = 4. [Ru(2)(O(2)CCH(3))(2)(pynp)(2)][PF(6)](2) x 2CH(3)OH (2) crystallizes in the monoclinic space group C2/c with a = 14.2228(7) A, b = 20.3204(9) A, c = 14.1022(7) A, beta = 95.144(1) degrees, V = 4059.3(3) A(3), and Z = 4. [Rh(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x C(7)H(8) (3) crystallizes in the monoclinic space group C2/c with a = 13.409(2) A, b = 21.670(3) A, c = 13.726(2) A, beta = 94.865(2) degrees, V = 3973.9(8) A(3), and Z = 4. A minor product, [Rh(2)(O(2)CCH(3))(2)(pynp)(2)(CH(3)CN)(2)][BF(4)][PF(6)] x 2CH(3)CN (4), was isolated from the mother liquor after crystals of 3 had been harvested; this compound crystallizes in the triclinic space group, P1 with a = 12.535(3) A, b = 13.116(3) A, c = 13.785(3) A, alpha = 82.52(3) degrees, beta = 77.70(3) degrees, gamma = 85.76(3) degrees, V = 2193.0(8) A(3), and Z = 2. Compounds 1-3 constitute a convenient series for probing the influence of the electronic configuration on the extent of mixing of the M-M orbitals with the pi system of the pynp ligand. Single point energy calculations performed on 1-3 at the B3LYP level of theory lend insight into the bonding in these compounds and allow for correlations to be made with electronic spectral data. Although purely qualitative in nature, the values for normalized change in orbital energies (NCOE) of the frontier orbitals before and after reduction are in agreement with the observed differences in reduction potentials as determined by cyclic voltammetry.  相似文献   

20.
In acetonitrile the rigid diphosphine ligand 2,9-bis(diphenylphosphino)-1,8-naphthyridine (dppn) reacts with (SMe2)AuCl in the presence of NaPF6 to produce a pale-yellow material identified as [Au2Na(mu-dppn)3](PF6)3 (1). In acetonitrile dppn reacts with 2 equiv of (SMe2)AuCl to form the simple Au-Cl adduct of the ligand, Au2Cl2dppn (2). In a fashion analogous to that of the synthesis of 1, the reaction of equimolar AgNO3 with dppn produces the trimetallic species [Ag2(mu-dppn)3Ag](PF6)3 (3) as a bright-yellow material. 1, 2, and 3 were characterized by 31P(1H) NMR spectroscopy, electronic absorption spectroscopy, X-ray crystallography, emission spectroscopy, and elemental analysis. Additionally 1 was further characterized by cyclic voltammetry and mass spectrometry. 1.4.5CH3CN.0.5(C2H5)2O (C107H72Au2F18N10.5NaO) crystallizes in the triclinic space group P1 with a = 15.408(3) A, b = 17.295(3) A, c = 22.425(5) A, alpha = 73.68(1) degrees, beta = 77.32(1) degrees, gamma = 74.18(1) degrees, V = 5451.4(19) A3, and Z = 2. C32H24Au2Cl2N2P2 (2) crystallizes in the monoclinic space group Cc with a = 10.936(2) A, b = 19.860(5) A, c = 20.864(2) A, beta = 118.182(1) degrees, V = 3127.3(8) A3, and Z = 4. Compound 3 crystallizes as the bis-DMSO adduct (C101H84Cl2F18N6O2P9S2) in the monoclinic space group C2/c with a = 28.825(7) A, b = 17.013(3) A, c = 23.916(7) A, beta = 115.23(1) degrees, V = 10609.6(44) A3, and Z = 4. The structures of 1 and 3 contain a three-coordinate metal capping the metallocryptate with an encapsulated ion. The central Ag(I) ion in 3 is positioned off-center to form a short Ag...Ag interaction of 3.145(2) A, while the central Na+ ion of 1 is centrally positioned with long Au...Na interactions of approximately 3.5 A. The solution-state properties of 1 were probed. 1 is emissive, as are the Li, K, and Cs analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号