首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic epoxidation of styrene using urea-hydrogen peroxide and heterotrinuclear Cu(II) complexes with general formula (ML n )2Cu(acac)2, where n = 1–3 and M = VO2+ or Mn2+ is reported. Schiff base complexes ML n involving a 3,4-diaminopyridine bridge with free coordination site were used as the ligand, where (Ln)2− is [(5-x-Sal)2Py]2 and x = H, Br or NO2. The complexes were characterized by physico-chemical and spectroscopic methods. The electrochemical properties of M were modified upon trinuclear complex formation. The trinuclear complexes show high catalytic activity, with up to 86% conversion and 93% selectivity, while no catalytic properties were observed for the monomeric complexes. The catalyst could be reused with some loss of activity.  相似文献   

2.
The coordination chemistry and electrochemistry of complexes of vanadium(III,IV,V) with salen (H2 salen = N,N'-ethylenebis(salicylideneamine) were reexamined in an attempt to uncover the origin of puzzling results reported in a previous study (Inorg. Chem. 1994, 33, 1056). Microelectrodes were utilized to allow measurements in the absence of supporting electrolyte. The source of the puzzling results was identified and the modifications required in the previous interpretations are specified. Corrected values of formal potentials and diffusion coefficients are also given. The acid-induced disproportionation of V(IV)O(salen), as originally proposed by Bonadies et al. (J. Chem. Soc., Chem. Commun. 1986, 1218; Inorg. Chem. 1987, 26, 1218), was largely supported by the present results. The equilibrium constant for this disproportionation reaction was measured. The stoichiometry and kinetics of the reaction between O2 and the V(III)-salen complex were examined, and a possible mechanism for this four-electron reduction of O2 is suggested.  相似文献   

3.
The electrochemical properties of vanadyl(IV) derivatives, namely salen Schiff base complexes of the type [VO(Salen)] (5-BrSalen, 5-NO2Salen, 5-MeOSalen, salpn (bis(salicylaldehyde)-1,3-propanediamine, 5-BrSalpn, 5-NO2Salpn, 5-MeOSalpn, Me2Salen, Salophen, 5-BrSalophen, and 5-MeOSalophen) were investigated. The equatorial Schiff base ligands affect the oxidation potentials via interaction with the d-orbitals of the vanadyl metal ion. The cathodic peak potential (Epc) becomes less negative according to the sequence MeO- < H- < Br- < NO2?.  相似文献   

4.
Transition Metal Chemistry - Twenty-four oxidovanadium(IV,V) complexes with tridentate Schiff base ligands based on 5-nitrosalicylaldehyde, 5-methoxysalicylaldehyde, or 5-sulfosalicylaldehyde and...  相似文献   

5.
Summary Complexes of pentachlorotantalum with the Schiff bases: bis(vanillin)benzidine, bis(vanillin)-o-dianisidine, bis(acetylacetone)benzidine, bis(p-dimethylaminobenzaldehyde)-o-dianisidine, bis(anisaldehyde)-1, 3-propanediamine and bis(p-dimethylaminobenzaldehyde)-o-phenylenediamine have been prepared and characterized by molar conductance, decomposition temperature, elemental and t.g. analyses and i.r. spectral measurements. The conductances reveal that pentachlorotantalum (1 mole) interacts with all the ligands (1 mole), all five chloride ions thus forming simple adducts. A comparative study of the i.r. spectra of the parent ligands and their complexes allows the coordination sites to be ascertained. The studies show that tantalum(V) chloride prefers to form complexes of high coordination number.  相似文献   

6.
Zhang XM  Hou JJ  Zhang WX  Chen XM 《Inorganic chemistry》2006,45(20):8120-8125
Two isostructural mixed-valence vanadium phosphonoacetates H2(DABCO)[V(IV)O(H2O)V(III)(OH)(O3PCH2CO2)2].2.5H2O (1) and H2(PIP)[V(IV)O(H2O)V(III)(OH)(O3PCH2CO2)2].2.5H2O (2) have been synthesized. They crystallize in the orthorhombic space group Pnna with a = 7.0479(10) A, b = 15.307(2) A, and c = 17.537(3) A for 1 and a = 7.0465(9) A, b = 15.646(2) A, and c = 17.396(2) A for 2. X-ray single-crystal diffraction reveals that 1 and 2 have a three-dimensional open framework featuring 16-ring ellipsoid channels that are filled with doubly protonated 1,4-diazabicyclo[2,2,2]octanium/piperazinium cations and water molecules. According to the classification in metal-organic frameworks, 1 and 2 contain infinite (-O-V-)(infinity) chains that are cross-linked by "metalloligand" [VO(H2O)(O3PCH2CO2)2](4-) into a 3-D net of the sra topology. The temperature dependence of the magnetic susceptibility of 1 shows that the chi(m)T value in the range of 60-320 K is constant of 1.105 cm3 K mol(-1)/V2 unit, and upon further cooling, the chi(m)T value rapidly increases to 1.81 cm3 K mol(-1) at 2 K. The corresponding effective magnetic moment (mu(eff))/V2 unit varies from 2.97 mu(B) at 320 K to 3.80 mu(B) at 2 K. The magnetic data in the range of 2-320 K follow the Curie-Weiss law with C = 1.074 cm3 K mol(-1) and Theta= -1.34 K.  相似文献   

7.
Reactions of silicon tetraacetate with different types ofSchiff bases have been investigated in anhydrous benzene. Monofunctional bidentate, C6H5CHNXOH and HORCHNC6H5 [whereX=CH2CH2, CH2CH(CH3) or o-C6H4 and R=o-C6H4 or 2,1-C10H6], bifunctional tridentate, o-HOC6H4CHNYOH [whereY=CH2CH2 or CH2CH(CH3)] and bifunctional tetradentateSchiff bases, o-HOC6H4C(CH3)N(CH2) n NC(CH3)C6H4OH-o (wheren=2 or 3) have been shown to yield derivatives of the type, Si(OAc)4– m L m, Si(OAc)4–2 n L n and Si(OAc)2 L (wherem=1,2 or 3;n=1 or 2 and HL, H2 L and H2 L represent the molecules of monofunctional bidentate, bifunctional tridentate and bifunctional tetradentateSchiff bases resp.) and have been found to be monomeric in boiling benzene. Tentative structures based on IR and in a few cases PMR spectra have been indicated for the resulting derivatives.With 2 Figures  相似文献   

8.
Summary Complexes of the X2Ti(SB) type, where X is OMe, OEt and OPr-i and SB is the dianion of salicylaldehyde-2-hydroxyanil (H2SAP), acetylacetone-2-hydroxyanil (H2AAP) and acetylacetone-2-mercaptoanil (H2ASP), have been prepared and characterized by means of conductivity, molecular weight, i.r., n.m.r and mass spectral measurements. The ONO and ONS donor ligands are terdentate and the titanium(IV) atom attains six-coordinationvia dimerization of the complexes. The tendency of (i-PrO)2Ti(AAP), where AAP is the dianion of acetylacetone-2-hydroxyanil, to become monomeric and to disproportionate to Ti(AAP)2 and Ti(OPr-i)4 was also investigated. Spectral data are also presented for the octahedral complexes of the Ti(SB)2 type, where SB is the dianion of H2SAP, H2AAP, H2ASP or of the related ONO donor ligands salicylaldehyde-2-hydroxyethylimine (H2SAE), salicylaldehyde-3-hydroxypropylimine (H2SPA), and diisopropylethanolamine (H2DIP).Presented in part at the 166th ACS National Meeting, Chicago, Illinois, Aug. 26–31, 1973; No. INORG. 50.  相似文献   

9.
Seven new ruthenium(III) complexes of the general formula [RuCl(PPh3)LL′] · xH2O (LL′ = [ONNO] = symmetrical and unsymmetrical Schiff base derivatives of trans-1,2-diaminocyclohexane and 2-hydroxynaphthaldehyde as well as R-salicylaldehydes, x = 0–3) have been synthesized. The complexes were characterized by physico-chemical and spectroscopic techniques. The catalytic activities of the complexes in the isomerization reaction of selected O-allyl systems, i.e., 1,4-diallyloxybutane and 4-allyloxybutan-1-ol have been studied. Some of the complexes showed high efficiency and E-stereoselectivity in double bond migration of allyl group to 1-propenyl group and high selectivity of isomerization of allyloxyalcohol to cyclic acetal.  相似文献   

10.
Summary Eleven oxovanadium(IV) complexes of tetradentate Schiff bases, obtained by condensating two moles of an o-hydroxycarbonyl compound with a diamine, have been prepared and characterized by elemental analysis, m.p., and i.r. and electronic spectra. The i.r. and electronic spectra of the free ligand and the complexes are compared and discussed. The Gaussian analysis of the vis. spectra of the complexes, normally C1 or Cs, in MeCN yielded four peaks at ca. 12000, 15000, 17700 and 20000–23000cm–1, assigned to the four d-d transitions.  相似文献   

11.
Two new series of Fe(III) Schiff-base complexes have been prepared and characterized by elemental and thermogravimetric analyses, IR, electronic, ESR and Mössbauer spectra. The Fe(III) complexes possess octahedral, pseudo-octahedral or pseudo-tetrahedral geometries around Fe(III), depending on the nature of the Schiff-base ligand used.  相似文献   

12.
Bis(β‐enaminoketonato) vanadium(III) complexes ( 2a–c ) [O(R1)C?C(H)xC(R2)?NC6H5]2VCl(THF) and the corresponding vanadium(IV) complexes ( 3a–c ) [O(R1)C?C(H)xC(R2)? NC6H5]2VO (R1 = ? (CH2)4? , R2 = H, x = 0, a ; R1 = ? C6H5, R2 = H, x = 1, b ; R1 = ? C6H5, R2 = ? C6H5, x = 1, c ) have been synthesized from VCl3(THF)3 and VOCl2(THF)2, respectively, by treating with 2.0 equivalent β‐enaminoketonato ligands in tetrahydrofuran. Structures of 2b and 3a–c were further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–c and 3a–c exhibited high catalytic activities (up to 23.76 kg of PE/mmolV h bar), and afforded polymers with unimodal molecular weight distributions at 70 °C indicating the good thermal stability. The catalytic behaviors were influenced not only by the oxidation state of the catalyst precursors but also by the ligand structures. Complexes 2a–c and 3a–c were also effective catalyst precursors for ethylene/1‐hexene copolymerization. The influence of polymerization parameters such as reaction temperature, Al/V molar ratio and hexene feed concentration on the ethylene/hexene copolymerization behaviors have bee also investigated in detail. In addition, the agents such as AlMe3, AliBu3, MeMgBr, MgCl2, and ZnEt2 were applied to control the molecular weight and molecular weight distribution modal. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3062–3072, 2010  相似文献   

13.
Summary The synthesis, characterization and geometrical features of penta- and hexa-coordinated oxovanadium(V) complexes, [(VOCl2)(SB)] and [(VOCl)(SB)2] (where SBH represents a monobasic Schiff base) are described. The isolated products are coloured, crystalline monomeric solids, which are nonelectrolytes. On the basis of spectral (i.r.,1H n.m.r. and u.v.) and magnetic susceptibility measurements distorted trigonal bipyramidal and octahedral geometries are proposed for [(VOCl2)(SB)] and for the [(VOCl)(SB)2] type complexes, respectively.  相似文献   

14.
Summary Binuclear complexes of dihydrocaffeic, caffeic and ferulic acids with vanadium were prepared and studied. The suggested square-pyramidal structures with catecholic-type coordination are supported by various spectroscopic, magnetic and thermogravimetric data.  相似文献   

15.
The reactions of [V(2)(micro-S(2))(2)(S(2)CNR(2))(4)] (R = alkyl) with NOBF(4) produce highly-oxidised, sulfur-rich, V(iv/v) complexes, [V(2)(micro-S(2))(2)(S(2)CNR(2))(4)]BF(4), that exhibit 15-line EPR spectra and structures consistent with Class III mixed-valence behaviour.  相似文献   

16.
The reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and Schiff bases in 1:1 molar ratio led to the formation of [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = Schiff base ligand). The new complexes have been characterized by analytical and spectroscopic (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyse the transfer hydrogenation of ketones.  相似文献   

17.
Reactions of VO(acac)2 with alkylene dithiophosphoric acids, POGOS2H, and of VOCl3 with the ammonium salts NH4(POGOS2) in 1:2 molar ratio gave the oxovanadium(IV) alkylene dithiophosphates, [VO(POGOS2)2], and monochloroxovanadium(V) alkylene dithiophosphates, [VOCl(POGOS2)2], respectively, where G = —CH2CMe2-CH2—, —CH2CEt2CH2—, —CHMeCH2CMe2— or —CMe2CMe2—. These complexes are green solids, soluble in common organic solvents and sensitive to moisture. They were characterized by elemental analysis, molecular weight and spectral studies including i.r. and n.m.r. (1H, 13C and 31P), which suggested bidentate bonding of the POGOS2 ligands to give a square pyramidal for the VIV complexes and an octahedral geometry for the VV complexes.  相似文献   

18.
Summary Some thorium(IV) complexes were synthesized with the tetradentate Schiff base ligands (N2O2 donor set) obtained by the condensation of ethylenediamine with salicylaldehyde (H2salen) or acetylacetone (H2 acacen). In all cases the neutral Schiff bases and not their anions are coordinated to the central thorium(IV) atom. The complexes have the general formula: ThL2Xa (L = H2 salen; X = Cl, Br, 1, NCS and L = lie acacen; X = Cl, 1, NCS, ClO4) or ThLX4 (L = H2 salen; X = NO3, ClO4 and L = H2 acacen; X = Br, NO3). The stoichiometry and coordination number of the complexes was determined on the basis of elemental analysis, conductivity measurements, i.r. spectra and t.g.a./d.t.a. data. The coordination number of the complexes is either 12 or 8 for the bisor monocomplexes respectively.  相似文献   

19.
A series of novel (arylimido)vanadium(V) complexes bearing tridentate salicylaldiminato chelating ligands, V(N‐2,6‐Me2C6H3)Cl2[(O‐2‐tBu‐4‐R‐C6H3)CH?ND] (R = H, D = 2‐CH3O? C6H4 ( 2a ); 2‐CH3S? C6H4 ( 2b ); 2‐Ph2P? C6H4 ( 2c ); 8‐C9H6N (quinoline) ( 2d ); CH2C5H4N ( 2e ); R = tBu, D = 2‐Ph2P? C6H4 ( 2f )), were prepared from V(NAr)Cl3 by reacting with 1.0 equiv of the ligands in the presence of triethylamine in tetrahydrofuran. These complexes were characterized by 1H, 13C, 31P, and 51V NMR spectra and elemental analysis. The structures of 2c and 2f were further confirmed by X‐ray crystallographic analysis. These (arylimido)vanadium(V) complexes are effective catalyst precursors for ethylene polymerization in the presence of Et2AlCl as a cocatalyst and ethyl trichloroacetate as a reactivating agent. Complex 2c with a ? PPh2 group in the sidearm was found to exhibit an exceptional activity up to 133800 kg polyethylene/molV h for ethylene polymerization at 75 °C, which is one of the highest activities displayed by homogeneous vanadium(V) catalysts at high temperature. Moreover, high molecular weight polymers with unimodal molecular weight distribution can be obtained, indicating the single site behavior of these catalysts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2633‐2642  相似文献   

20.
Oxidation catalysis is used to increase the performance of hydrogen peroxide in laundry bleach applications. Bleach catalysts provide cost‐effective, energy‐saving and environmentally friendly bleach systems yielding perfect stain removal at lower temperatures. This comparative study is based on the synthesis of bis[bis(salicylhydrazonephenoxy)manganese(III)] phthalocyaninatozinc(II) ( 2 ), bis[bis(salicylhydrazonephenoxy)cobalt(III)] phthalocyaninatozinc(II) ( 3 ) and bis[bis(salicylhydrazonephenoxy)iron(III)] phthalocyaninatozinc(II) ( 4 ) as tri‐nuclear complexes consisting of two Schiff base complexes substituting a zinc phthalocyanine. Complexion on the periphery to obtain complexes 2 , 3 , 4 was performed through the reaction of a Schiff base‐substituted phthalocyanine using MnCl2?4H2O, CoCl2?6H2O or FeCl3?6H2O salts in basic condition in dimethylformamide. Fourier transform infrared, 1H NMR, 13C NMR, UV–visible, inductively coupled plasma optical emission and mass spectra were applied to characterize the prepared compounds. The bleach performances of the three phthalocyanine compounds 2 , 3 , 4 were examined by the degradation of morin as hydrophilic dye. The degradation progress in the presence of catalysts 2 , 3 , 4 /H2O2 combination in aqueous solution was investigated using an online spectrophotometric method. It was found that the catalysts 2 , 3 , 4 exhibited better bleaching performance at 25 °C than tetraactylethylethylenediamine as bleach activator used in powder detergent formulations for stain removal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号