共查询到20条相似文献,搜索用时 22 毫秒
1.
Selectivity for the Diels-Alder cycloaddition reaction of the electron-rich diene with single-walled carbon nanotubes was first investigated. This chemistry is a complete departure from the curvature-dependent reactivity based on the carbon pyramidalization angle. 相似文献
2.
In this work we present a simple and non-invasive approach to the preparation of semi-conducting single-walled carbon nanotubes (SWCNTs) through selective destruction of the metallic counterparts present in the starting material. Most separation techniques require chemical treatment, the application of ultrasound, or the addition of auxiliary molecules, which lead to the introduction of defects and impurities. In this contribution, laser ablation SWCNTs were selectively oxidised via long-term heating leading to the enrichment of semi-conductive nanotubes. Spectroscopic analysis demonstrates that the selective character of oxidation occurs only in the optimal temperature range, determined by thermo-gravimetric analysis. By tuning the process parameters, one can obtain a sample exhibiting different purity (up to 95 % of semi-conducting nanotubes) and separation efficiency. The samples’ quality and yield of separation were determined by UV-VIS-NIR spectroscopy, Raman spectroscopy, and TG analysis. The approach presented is readily scaleable. 相似文献
3.
Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes 总被引:6,自引:0,他引:6
Li H Zhou B Lin Y Gu L Wang W Fernando KA Kumar S Allard LF Sun YP 《Journal of the American Chemical Society》2004,126(4):1014-1015
A derivatized porphyrin with long alkyl chains, 5,10,15,20-tetrakis(hexadecyloxyphenyl)-21H,23H-porphine, is selective toward semiconducting single-walled carbon nanotubes (SWNTs) in presumably noncovalent interactions, resulting in significantly enriched semiconducting SWNTs in the solubilized sample and predominantly metallic SWNTs in the residual solid sample according to Raman, near-IR absorption, and bulk conductivity characterizations. 相似文献
4.
Britz DA Khlobystov AN Wang J O'Neil AS Poliakoff M Ardavan A Briggs GA 《Chemical communications (Cambridge, England)》2004,(2):176-177
Exohedrally functionalised fullerenes have been inserted in single-walled carbon nanotubes (SWNTs) with the aid of supercritical carbon dioxide to form peapods; C(61)(COOEt)(2) are encapsulated in SWNTs in high yield, whereas C(61)(COOH)(2) aggregate via hydrogen bonding to form a supramolecular complex, which sterically hinders encapsulation and causes it to adhere to the exterior surface of the SWNTs. 相似文献
5.
Maeda Y Kanda M Hashimoto M Hasegawa T Kimura S Lian Y Wakahara T Akasaka T Kazaoui S Minami N Okazaki T Hayamizu Y Hata K Lu J Nagase S 《Journal of the American Chemical Society》2006,128(37):12239-12242
The dispersion of small-diameter single-walled carbon nanotubes (SWNTs) produced by the CoMoCAT method in tetrahydrofuran (THF) with the use of amine was studied. The absorption, photoluminescence, and Raman spectroscopies showed that the dispersion and centrifugation process leads to an effective separation of metallic SWNTs from semiconducting SWNTs. Since this method is simple and convenient, it is highly applicable to an industrial utilization for widespread applications of SWNTs. 相似文献
6.
Ozawa H Fujigaya T Niidome Y Hotta N Fujiki M Nakashima N 《Journal of the American Chemical Society》2011,133(8):2651-2657
Single-walled carbon nanotubes (SWNTs) have remarkable and unique electronic, mechanical, and thermal properties, which are closely related to their chiralities; thus, the chirality-selective recognition/extraction of the SWNTs is one of the central issues in nanotube science. However, any rational materials design enabling one to efficiently extract/solubilize pure SWNT with a desired chirality has yet not been demonstrated. Herein we report that certain chiral polyfluorene copolymers can well-recognize SWNTs with a certain chirality preferentially, leading to solubilization of specific chiral SWNTs. The chiral copolymers were prepared by the Ni(0)-catalyzed Yamamoto coupling reaction of 2,7-dibromo-9,9-di-n-decylfluorene and 2,7-dibromo-9,9-bis[(S)-(+)-2-methylbutyl]fluorene comonomers. The selectivity of the SWNT chirality was mainly determined by the relative fraction of the achiral and chiral side groups. By a molecular mechanics simulation, the cooperative interaction between the fluorene moiety, alkyl side chain, and graphene wall were responsible for the recognition/dissolution ability of SWNT chirality. This is a first example describing the rational design and synthesis of novel fluorene-based copolymers toward the recognition/extraction of targeted (n,?m) chirality of the SWNTs. 相似文献
7.
8.
Heller DA Mayrhofer RM Baik S Grinkova YV Usrey ML Strano MS 《Journal of the American Chemical Society》2004,126(44):14567-14573
Gel electrophoresis and column chromatography conducted on individually dispersed, ultrasonicated single-walled carbon nanotubes yield simultaneous separation by tube length and diameter. Electroelution after electrophoresis is shown to produce highly resolved fractions of nanotubes with average lengths between 92 and 435 nm. Separation by diameter is concomitant with length fractionation, and nanotubes that have been cut shortest also possess the greatest relative enrichments of large-diameter species. Longer sonication time causes increased electrophoretic mobility in the gels; thus, ultrasonic processing determines the degree of both length and diameter separation of the nanotubes. The relative quantum yield decreases nonlinearly as the nanotube length becomes shorter. These techniques constitute a preparative, scalable method for separating nanotubes by two important attributes required for electronic and sensor applications. 相似文献
9.
Large-scale separation of metallic and semiconducting single-walled carbon nanotubes 总被引:6,自引:0,他引:6
Maeda Y Kimura S Kanda M Hirashima Y Hasegawa T Wakahara T Lian Y Nakahodo T Tsuchiya T Akasaka T Lu J Zhang X Gao Z Yu Y Nagase S Kazaoui S Minami N Shimizu T Tokumoto H Saito R 《Journal of the American Chemical Society》2005,127(29):10287-10290
In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way. 相似文献
10.
Saito T Xu WC Ohshima S Ago H Yumura M Iijima S 《The journal of physical chemistry. B》2006,110(12):5849-5853
Reversed micelles containing metallic ions have been used as precursors of novel catalysts for the gas-phase synthesis of single-walled carbon nanotubes (SWNTs). This technique possesses the following advantages: (i) excellent solubility in organic solvents, which are used as reactants and (ii) facile preparation of multicomponent catalysts enabling systematic screening of catalyst compositions for the synthesis of SWNTs. In this study, we report the results of the screening study on the catalytic behavior of Fe-Mo binary catalysts during the synthesis of SWNTs. The results suggested that the catalytic ability was closely related to the strain of the crystal structure of Fe-Mo catalysts formed in the reaction and/or the phase transition caused by dissolution of the Mo atoms. The addition of lithium to the Fe-Mo binary catalysts has revealed an increase in the yield of SWNTs. 相似文献
11.
Aprile C Martín R Alvaro M Scaiano JC Garcia H 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(16):5030-5038
9,10-Diphenylanthracene (DPA), a well-studied organic chromophore (Phi(fl) = 0.98) that exhibits electroluminescence, has been covalently bound through 2-(ethylthio)ethylamido linkers to the carboxylic acid groups of short, soluble single-walled carbon nanotubes (sSWNTs) of 1 microm average length, and the resulting DPA-functionalised sSWNT (DPA- sSWNT) macromolecular adducts (4.6 wt % DPA content) characterised by solution (1)H NMR, Raman and IR spectroscopy and thermogravimetric analysis. Comparison of the quenching of DPA fluorescence (steady-state and time-resolved) and of the transient optical spectra of sSWNTs and DPA-sSWNTs show that the covalent linkage boosts the interaction between the DPA and the sSWNT units. DPA-sSWNTs exhibit emission in the near-IR region from 1100-1400 nm with an enhanced quantum yield (Phi = 5.7x10(-3)) compared with sSWNTs (Phi = 3.9x10(-3)). 相似文献
12.
Chirality is a crucial factor in a single-walled carbon nanotube (SWCNT) because it determines its optical and electronic properties. A chiral angle spanning from 0° to 30° results from twisting of the graphene sheet conforming the nanotube wall and is equivalently expressed by chiral indexes (n,m). However, lack of chirality control during SWCNT synthesis is an obstacle for a widespread use of these materials. Here we use first-principles density functional theory (DFT) and classical molecular dynamics (MD) simulations to propose and illustrate basic concepts supporting that the nanocatalyst structure may act as a template to control the chirality during nanotube synthesis. DFT optimizations of metal cluster (Co and Cu)∕cap systems for caps of various chiralities are used to show that an inverse template effect from the nascent carbon nanostructure over the catalyst may exist in floating catalysts; such effect determines a negligible chirality control. Classical MD simulations are used to investigate the influence of a strongly interacting substrate on the structure of a metal nanocatalyst and illustrate how such interaction may help preserve catalyst crystallinity. Finally, DFT optimizations of carbon structures on stepped (211) and (321) cobalt surfaces are used to demonstrate the template effect imparted by the nanocatalyst surface on the growing carbon structure at early stages of nucleation. It is found that depending on the step structure and type of building block (short chains, single atoms, or hexagonal rings), thermodynamics favor armchair or zigzag termination, which provides guidelines for a chirality controlled process based on tuning the catalyst structure and the type of precursor gas. 相似文献
13.
Simple binary solids can be found to adopt unprecedented structures when confined into nanometre-sized cavities, such as the inner cylindrical bore of single-walled carbon nanotubes (SWNT). In the case of the discussed Lal(x)@SWNT encapsulation composite, the Lal2 "crystal" fragment adopts the structure of bulk Lal3, with one third of the iodine positions unoccupied. A complete characterisation of the encapsulation composite was achieved using an enhanced digital restoration approach of high-resolution transmission electron microscopy (HRTEM) images. The resulting complex exit surface wave provides information about the precise structural data of both filling material and host SWNT, establishing the SWNT's chirality and thus enabling a prediction of the composite's overall electron-transport properties. 相似文献
14.
Ramesh P Okazaki T Taniguchi R Kimura J Sugai T Sato K Ozeki Y Shinohara H 《The journal of physical chemistry. B》2005,109(3):1141-1147
Double-wall carbon nanotubes (DWNTs) have been selectively synthesized over Fe/Co loaded mesoporous silica by catalytic chemical vapor deposition of alcohol. Several silica materials with desired pore diameter and morphology have been investigated for the DWNT growth. The diameter distribution and selectivity of the DWNT are found to depend on the reaction temperature, pore size, and thermal stability of the support material. A high-yield synthesis of DWNTs has been achieved at 900 degrees C over high-temperature stable mesoporous silica. The outer diameter of DWNTs is found to be in the range of 1.5-5.4 nm with a "d" spacing of 0.38 +/- 0.02 nm between inner and outer layers, which is much larger than those of multiwall carbon nanotubes. 相似文献
15.
Single walled carbon nanotubes (SWNTs) are exfoliated and functionalized predominantly as individuals by grinding them for minutes at room temperature with aryldiazonium salts in the presence of ionic liquids (ILs) and K(2)CO(3). This constitutes an extremely rapid and mild green chemical functionalization process for obtaining the individualized nanotube structures. A number of ILs and various reaction conditions were surveyed. Raman, XPS, UV/vis/NIR spectroscopies, thermogravimetric analysis, and atomic force and transmission electron microscopies were used to characterize the products. 相似文献
16.
Mpourmpakis G Froudakis GE Lithoxoos GP Samios J 《The Journal of chemical physics》2007,126(14):144704
Combined ab initio and grand canonical Monte Carlo simulations have been performed to investigate the dependence of hydrogen storage in single-walled carbon nanotubes (SWCNTs) on both tube curvature and chirality. The ab initio calculations at the density functional level of theory can provide useful information about the nature of hydrogen adsorption in SWCNT selected sites and the binding under different curvatures and chiralities of the tube walls. Further to this, the grand canonical Monte Carlo atomistic simulation technique can model large-scale nanotube systems with different curvature and chiralities and reproduce their storage capacity by calculating the weight percentage of the adsorbed material (gravimetric density) under thermodynamic conditions of interest. The author's results have shown that with both computational techniques, the nanotube's curvature plays an important role in the storage process while the chirality of the tube plays none. 相似文献
17.
Wu Y Hudson JS Lu Q Moore JM Mount AS Rao AM Alexov E Ke PC 《The journal of physical chemistry. B》2006,110(6):2475-2478
Single-walled carbon nanotubes (SWNTs), being hydrophobic by nature, aggregate in water to form large bundles. However, isolated SWNTs possess unique physical and chemical properties that are desirable for sensing and biological applications. Conventionally isolated SWNTs can be obtained by wrapping the tubes with biopolymers or surfactants. The binding modes proposed for these solubilization schemes, however, are less than comprehensive. Here we characterize the efficacies of solubilizing SWNTs through various types of phospholipids and other amphiphilic surfactants. Specifically, we demonstrate that lysophospholipids, or single-chained phospholipids offer unprecedented solubility for SWNTs, while double-chained phospholipids are ineffective in rendering SWNTs soluble. Using transmission electron microscopy (TEM) we show that lysophospholipids wrap SWNTs as striations whose size and regularity are affected by the polarity of the lysophospholipids. We further show that wrapping is only observed when SWNTs are in the lipid phase and not the vacuum phase, suggesting that the environment has a pertinent role in the binding process. Our findings shed light on the debate over the binding mechanism of amphiphilic polymers and cylindrical nanostructures and have implications on the design of novel supramolecular complexes and nanodevices. 相似文献
18.
Gebhardt B Hof F Backes C Müller M Plocke T Maultzsch J Thomsen C Hauke F Hirsch A 《Journal of the American Chemical Society》2011,133(48):19459-19473
The efficient and controllable synthesis, the detailed characterization, and the chemical postfunctionalization of polycarboxylated single-walled carbon nanotubes SWCNT(COOH)(n) are reported. This innovative covalent sidewall functionalization method is characterized by (a) the preservation of the integrity of the entire σ-framework of SWCNTs; (b) the possibility of achieving very high degrees of addition; (c) control of the functionalization degrees by the variation of the reaction conditions (reaction time, ultrasonic treatment, pressure); (d) the identification of conditions for the selective functionalization of semiconducting carbon nanotubes, leaving unfunctionalized metallic tubes behind; (e) the proof that the introduced carboxylic acid functionalities can serve as versatile anchor points for the coupling to functional molecules; and (f) the application of a subsequent thermal degradation step of the functionalized semiconducting tubes leaving behind intact metallic SWCNTs. Functional derivatives have been characterized in detail by means of Raman, UV-vis/nIR, IR, and fluorescence spectroscopy as well as by thermogravimetric analysis combined with mass spectrometry, atomic force microscopy, and zeta-potential measurements. 相似文献
19.
Bioelectrochemical single-walled carbon nanotubes 总被引:21,自引:0,他引:21
Azamian BR Davis JJ Coleman KS Bagshaw CB Green ML 《Journal of the American Chemical Society》2002,124(43):12664-12665
Metalloproteins and enzymes can be immobilized on SWNTs of different surface chemistry. The combination of high surface area, robust immobilization and inherent nanotube electrochemical properties is of promising application in bioelectrochemistry. 相似文献