首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular beam techniques are used to grow water films on Pt(111) with various incident angles and collision energies from 5 to 205 kJ/mol. The effect of the incident angle and collision energy on the porosity and surface area of the vapor-deposited water films was studied using nitrogen physisorption and infrared spectroscopy. At low incident energy (5 kJ/mol), the infrared spectra, which provide a direct measure of the surface area, show that the surface area increases with incident angle and levels off at angles > 65 degrees . This is in contrast to the nitrogen uptake data, which display a maximum near 65 degrees because of the decrease in nitrogen condensation in the larger pores that develop at high incident angles. Both techniques show that the morphology of vapor-deposited water films depends strongly on the incident kinetic energy. These observations are consistent with a ballistic deposition shadowing model used to describe the growth of highly porous materials at glancing angle. The dependence of film morphology on incident energy may have important implications for the growth of porous materials via glancing angle deposition and for the structure of interstellar ices.  相似文献   

2.
Amorphous solid of tri-O-methyl-β-cyclodextrin was produced by grinding its crystalline sample with a rod-milling machine at room temeprature. Structural and thermal characterizations of the sample during amorphizing process were done by X-ray powder diffraction and differential scanning calorimeter. The glass transition for a fully amorphized sample was found to occur at essentially the same temperature as that for a liquid-quenched glass. The heat capacities of the non-crystalline solids realized by grinding and liquid quenching and of the crystalline solid were measured by a low temperature adiabatic calorimeter. Excess enthalpies of the ground amorphous solid and liquid quenched glass over that of the hypothetical equilibrium liquid were determined calorimetrically. Similar and dissimilar thermal behavior of both non-crystalline solids were compared.  相似文献   

3.
Laser-induced desorption of water molecules from nanometer amorphous solid water films supported on a single-crystal platinum substrate is reported. A femtosecond laser pulse creates hot substrate electrons, which are injected into the water layer, resulting in significant desorption at the water-vacuum interface. The dependence of the desorption yield on film thickness and results for isotopic spacer and capping layers reveal that the desorbing water originates from relatively deep down into the water layer, i.e., from several nanometers below the surface. This is proposed to be the result of cooperative electronic effects resulting from the high electron densities in the thin water film, which cause a transient destabilization of the water H-bonded network. Motion of excited water molecules through the layer is enabled by mixing within the layer on ultrafast timescales during the desorption process.  相似文献   

4.
The structure of water clusters that have adsorbed from one to six methane molecules is studied by molecular dynamics simulation. Characteristic structural units of Voronoi and hybrid polyhedra are employed to reveal the structural changes resulting from the attachment of CH4 molecules to the clusters. The most significant changes in topological properties are associated with variations in the number of faces of simplified polyhedra. A change is unambiguously detected in the small-angle peak intensity in the angular distribution of nearest geometrical neighbors determined with the use of the Voronoi polyhedra. The results of two different calculations of the number of hydrogen bonds in the clusters are compared, and the “nonsphericity” coefficients are calculated for the polyhedra.  相似文献   

5.
Two different and novel composite monolithic materials with multimodal hierarchical porosity were prepared. The composites were prepared by immobilizing porous clay hetrostructure (PCH) and aluminum pillared clay (PILC), individually, into highly porous framework of a foam like monolith zeolite (MZ). The MZ was prepared hydrothermally, by following a polyurethane foam (PUF) based induced-template procedure and, consists of ZSM-5 framework. The MZ was fabricated into different composite materials through a simple dip coating method. Characterization of these materials with X-ray, SEM, and low temperature nitrogen adsorption techniques shows that composites materials are the morphological mixture (hybrid) of constituting materials. It also show that PCH based composites are meso and microporous, where as PILC based composites are essentially microporous in nature. The materials were further characterized for their hierarchical porosities by adsorption of two VOCs, which were toluene and n-hexane, under ambient conditions. The difference in adsorption of various sized (small to large) molecules was considered to work out the hierarchy of pores in these materials. With help of adsorption data, the hierarchical porosity was established into three size ranges, based on pore volumes of certain pore size ranges (>0.36 nm–<0.49 nm, >0.49 nm–<0.66 nm, and ≥0.66 nm). Water adsorption studies on these materials confirm that the coating of zeolite monolith with clay based adsorbents can also modify the hydrophobicity of original zeolite structure.  相似文献   

6.
The interaction of methanol (MeOH) with amorphous solid water (ASW) composed of D2O molecules, prepared at 125 K on a polycrystalline Ag substrate, was studied with metastable-impact-electron spectroscopy, reflection-absorption infrared spectroscopy, and temperature-programmed desorption mass spectroscopy. In connection with the experiments, classical molecular dynamics (MD) simulations have been performed on a single CH3OH molecule adsorbed at the ice surface (T=190 K), providing further insights into the binding and adsorption properties of the molecule at the ice surface. Consistently with the experimental deductions and previous studies, MeOH is found to adsorb with the hydroxyl group pointing toward dangling bonds of the ice surface, the CH3 group being oriented upwards, slightly tilted with respect to the surface normal. It forms the toplayer up to the onset of the simultaneous desorption of D2O and MeOH. At low coverage the adsorption is dominated by the formation of two strong hydrogen bonds as evidenced by the MD results. During the buildup of the first methanol layer on top of an ASW film the MeOH-MeOH interaction via hydrogen-bond formation becomes of importance as well. The interaction of D2O with solid methanol films and the codeposition of MeOH and D2O were also investigated experimentally; these experiments showed that D2O molecules supplied to a solid methanol film become embedded into the film.  相似文献   

7.
The low-energy, electron-stimulated production of molecular oxygen from pure amorphous solid water (ASW) films and ASW films codosed with H(2)O(2) is investigated. Layered films of H(2)(16)O and H(2)(18)O are used to investigate the reaction mechanisms for O(2) production and the spatial profile of the reactions within the films. The O(2) yield is dose-dependent, indicating that precursors are involved in the O(2) production. For temperatures below approximately 80 K, the O(2) yield at steady state is relatively low and nearly independent of temperature. At higher temperatures, the yield increases rapidly. The O(2) yield is enhanced from H(2)O(2)-dosed water films, but the experiments show that H(2)O(2) is not the final precursor in the reactions leading to O(2). Instead, a stable precursor for O(2) is produced through a multistep reaction sequence probably involving the reactions of OH radicals to produce H(2)O(2) and then HO(2). The O(2) is produced in a nonthermal reaction from the HO(2). For relatively thick films, the reactions leading to O(2) occur at or near the ASW/vacuum interface. However, the electronic excitations that initiate the reactions occur over a larger range in the film. A kinetic model that qualitatively accounts for all of the observations is presented.  相似文献   

8.
Caging and photo-induced decomposition of ethyl chloride molecules (EC) within a layer of amorphous solid water (ASW) on top of clean and oxygen-covered Ru(001) under ultra-high vacuum (UHV) conditions are presented. The caged molecules were estimated to reside 1.5 +/- 0.2 nm above the solid surface, based on parent molecule thermal decomposition on the clean ruthenium. Dissociative electron attachment (DEA) of the caged molecules following 193 nm laser irradiation, result in initial fragmentation to ethyl radical and chloride anion. It was found that photoreactivity on top of the clean ruthenium surface (Ru) is twenty times faster than on the oxygen-covered surface (O/Ru), with DEA cross sections: sigma(Ru) = (3.8 +/- 1) x 10(-19) cm(2) and sigma(O/Ru) = (2.1 +/- 0.3) x 10(-20) cm(2). This difference is attributed to the higher work function of oxygen-covered ruthenium, leading to smaller electron attachment probability due to mismatch of the ruthenium photo-electron energy with the adsorbed EC excited electron affinity levels. EC molecules fragmented within the cage, result in post-irradiation TPD spectra that reveal primarily C(4)H(8), C(3)H(5) and C(3)H(3), without any oxygen-containing molecules. Unique stabilization of the photoproducts has been observed with the first layer of water molecules in direct contact with the substrate, desorbing near 180 K, a significantly higher temperature than the desorption of fully caged molecules. This study may contribute for understanding stratospheric photochemistry and processes in interstellar space.  相似文献   

9.
The kinetics of crystalline ice nucleation and growth in nonporous, molecular beam deposited amorphous solid water (ASW) films are investigated at temperatures near 140 K. We implement an experimental methodology and corresponding model of crystallization kinetics to decouple growth from nucleation and quantify the temperature dependence and absolute rates of both processes. Nucleation rates are found to increase from approximately 3x10(13) m(-3) s(-1) at 134 K to approximately 2x10(17) m(-3) s(-1) at 142 K, corresponding to an Arrhenius activation energy of 168 kJ/mol. Over the same temperature range, the growth velocity increases from approximately 0.4 to approximately 4 A s(-1), also exhibiting Arrhenius behavior with an activation energy of 47 kJ/mol. These nucleation rates are up to ten orders of magnitude larger than in liquid water near 235 K, while growth velocities are approximately 10(9) times smaller. Crystalline ice nucleation kinetics determined in this study differ significantly from those reported previously for porous, background vapor deposited ASW, suggesting the nucleation mechanism is dependent upon film morphology.  相似文献   

10.
The influence of surface morphology/porosity on the desorption kinetics of weakly bound species was investigated by depositing D2 on amorphous solid water (ASW) films grown by low temperature vapor deposition under various conditions and with differing thermal histories. A broad distribution of binding energies of the D2 monolayer on nonporous and porous ASW was measured experimentally and correlated by theoretical calculations to differences in the degree of coordination of the adsorbed H2 (D2) to H2O molecules in the ASW depending on the nature of the adsorption site, i.e., surface valleys vs surface peaks in a nanoscale rough film surface. For porous films, the effect of porosity on the desorption kinetics was observed to be a reduction in the desorption rate with film thickness and a change in peak shape. This can be partly explained by fast diffusion into the ASW pore structure via a simple one-dimensional diffusion model and by a change in binding energy statistics with increasing total effective surface area. Furthermore, the D2 desorption kinetics on thermally annealed ASW films were investigated. The main effect was seen to be a reduction in porosity and in the number of highly coordinated binding sites with anneal temperature due to ASW restructuring and pore collapse. These results contribute to the understanding of desorption from porous materials and to the development of correct models for desorption from and catalytic processes on dust grain surfaces in the interstellar medium.  相似文献   

11.
12.
The recycling of organic wastes has become very important and the development of technology for recycling organic wastes needs to sustain industrial development. In this study, techniques for producing carbonaceous materials from organic wastes are described and water adsorption is characterized. The organic wastes used are coffee grounds and oolong tea leaves carbonized at 673 to 1073 K. The iodine adsorption capacity of the carbonaceous materials increased with increased carbonization temperature. The amount of water adsorbed onto the carbonization materials produced from oolong tea leaves at 873 K for 2 h was the highest. The Freundlich constant 1/n and the differential heat of adsorption of the carbonaceous materials produced from oolong tea leaves were greater than that of the carbonaceous materials produced from coffee grounds. The ability to humidity control can be estimated by the difference between the amount of water adsorbed relative pressure 0.90 and that at relative pressure 0.55. The ability to humidity control was the greatest for the carbonaceous materials produced from the oolong tea leaves at 873 K for 2 h and did not depend upon the adsorption temperature. These results indicated that the carbonaceous materials produced from oolong tea leaves at 873 K for 2 h could have more humidity control.  相似文献   

13.
We have studied the compaction of vapor-deposited amorphous solid water by energetic ions at 40 K. The porosity was characterized by ultraviolet-visible spectroscopy, infrared spectroscopy, and methane adsorption/desorption. These three techniques provide different and complementary views of the structural changes in ice resulting from irradiation. We find that the decrease in internal surface area of the pores, signaled by infrared absorption by dangling bonds, precedes the decrease in the pore volume during irradiation. Our results imply that impacts from cosmic rays can cause compaction in the icy mantles of the interstellar grains, which can explain the absence of dangling bond features in the infrared spectrum of molecular clouds.  相似文献   

14.
Thermal desorption spectroscopy is employed to examine transport mechanisms in structured, nanoscale films consisting of labeled amorphous solid water (ASW, H(2)(18)O, H(2)(16)O) and organic spacer layers (CCl(4), CHCl(3)) prior to ASW crystallization (T approximately 150-160 K). Self-transport is studied as a function of both the ASW layer and the organic spacer layer film thickness, and the effectiveness of these spacer layers as a bulk diffusion "barrier" is also investigated. Isothermal desorption measurements of structured films are combined with gas uptake measurements (CClF(2)H) to investigate water self-transport and changes in ASW film morphology during crystallization and annealing. CCl(4) desorption is employed as a means to investigate the effects of ASW film thickness and heating schedule on vapor-phase transport. Combined, these results demonstrate that the interlayer mixing observed near T approximately 150-160 K is inconsistent with a mechanism involving diffusion through a dense phase; rather, we propose that intermixing occurs via vapor-phase transport through an interconnected network of cracks/fractures created within the ASW film during crystallization. Consequently, the self-diffusivity of ASW prior to crystallization (T approximately 150-160 K) is significantly smaller than that expected for a "fragile" liquid, indicating that water undergoes either a glass transition or a fragile-to-strong transition at a temperature above 160 K.  相似文献   

15.
Reflection-absorption infrared spectra (RAIRS) of amorphous solid water (ASW) films grown at 20 K on a Pt(111) substrate at various angles (theta(Beam) = 0-85 degrees ) using a molecular beam are reported. They display complex features arising from the interplay between refraction, absorption within the sample, and interference effects between the multiple reflections at the film-substrate and film-vacuum interfaces. Using a simple classical optics model based on Fresnel equations, we obtain optical constants [i.e., n(omega) and k(omega)] for porous ASW in the 1000-4000 cm(-1) (10-2.5 microm) range. The behavior of the optical properties of ASW in the intramolecular OH stretching region with increasing theta(Beam) is shown to be strongly correlated with its decreasing density and increasing surface area. A direct comparison between the RAIRS and calculated vibrational spectra shows a large difference ( approximately 200 cm(-1)) in the position of the coupled H-bonded intramolecular OH stretching vibrations spectral feature. Moreover, this band shifts in opposite directions with increasing theta(Beam) in RAIRS and vibrational spectra demonstrating RAIRS spectra cannot be interpreted straightforwardly as vibrational spectra due to severe optical distortions from refraction and interference effects.  相似文献   

16.
With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization.  相似文献   

17.
The effects of humidity on gas permeation were studied for five SAPO-34 membranes with different fractions of permeation through non-SAPO pores. Membranes with high CO2/CH4 separation selectivities (>20) were stable in humidified gases, but degradation was seen for some membranes after months of exposure to the laboratory atmosphere. Once the membranes started to degrade, the rate of degradation appeared to accelerate. The degradation created non-SAPO pores that were larger than the SAPO-34 pores, as indicated by i-C4H10 permeance, CO2/CH4 selectivity, and CO2 flux dependence on pressure. The effect of humidity on gas permeance correlated with these indicators of non-SAPO pores. Adsorbed water appeared to completely block the SAPO pores, but permeation through non-SAPO pores increased with humidity. Therefore, water adsorption can be used to determine membrane quality and the fraction of transport through non-SAPO pores.  相似文献   

18.
The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.  相似文献   

19.
The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons.  相似文献   

20.
The interaction of benzene with polycrystalline Ag and amorphous solid water (D(2)O) deposited thereupon at 124 K was investigated. Metastable impact electron spectroscopy, Reflection-absorption infrared spectroscopy, and temperature programmed desorption were utilized to obtain information on the electronic structure and the relative contribution to the bonding properties of the aromatic molecules among themselves and with D(2)O. On Ag, the benzene molecular plane is oriented parallel to the surface in the first layer. The second layer is tilted with respect to the first one. A total work function decrease of 0.8 eV takes place during the buildup of the first two layers. On amorphous solid water, the orientational distribution of the benzene molecular planes is initially peaked at an angle parallel to the water surface. During the completion of the first adlayer a coverage-induced reorientation takes place, inducing a tilt of the benzene molecules of the first adlayer. Still larger benzene exposures appear to lead to the formation of three-dimensional benzene clusters. Films produced by codepositing benzene and D(2)O or by postdepositing D(2)O layers on benzene films display "volcano like" benzene desorption during ice crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号