首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.  相似文献   

2.
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.  相似文献   

3.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H+NH3-->H2+NH2 reaction using a seven-dimensional model and an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated for the initial ground and seven excited states of NH3 with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants are calculated for the temperature range 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the total reaction probabilities are overall very small, (b) the symmetric and asymmetric NH stretch excitations enhance the reaction significantly and almost all of the excited energy deposited was used to reduce the reaction threshold, (c) the excitation of the umbrella and bending motion have a smaller contribution to the enhancement of reactivity, (d) the main contribution to the thermal rate constants is thought to come from the ground state at low temperatures and from the stretch excited states at high temperatures, and (e) the calculated thermal rate constants are three to ten times smaller than the experimental data and transition state theory results.  相似文献   

4.
Exact quantum mechanical state-to-state differential and integral cross sections and their energy dependence have been calculated on an accurate NH2 potential energy surface (PES), using a newly proposed Chebyshev wave packet method. The NH product is found to have a monotonically decaying vibrational distribution and an inverted rotational distribution. The product angular distributions peak in both forward and backward directions, but with a backward bias. This backward bias is more pronounced than that observed previously on a less accurate PES. Both the differential and integral cross sections oscillate mildly with collision energy, indicating the dominance of short-lived resonances. The quantum mechanical results are compared with those obtained from quasi-classical trajectories. The agreement is generally reasonable and the discrepancies can be attributed to the neglect of quantum effects such as tunneling. Detailed analysis of the trajectories revealed that the backward bias in the differential cross section stems overwhelmingly from the fast insertion component of the reaction, augmented with some flux from the abstraction channel, particularly at high collision energies.  相似文献   

5.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H2+NH2-->H+NH3 reaction using a seven dimensional model on an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values and nonreactive NH2 group keeps C2v symmetry and the rotation-vibration coupling in NH2 is neglected. The total reaction probabilities are calculated when the two reactants are initially at their ground states, when the NH2 bending mode is excited, and when H2 is on its first vibrational excited state, with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants and equilibrium constants are calculated for the temperature range of 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the reaction is dominated by ground-state reactivity and the main contribution to the thermal rate constants is thought to come from this state, (b) the excitation energy of H2 was used to enhance reactivity while the excitation of the NH2 bending mode hampers the reaction, (c) the calculated thermal rate constants are very close to the experimental data and transition state theory results at high and middle temperature, while they are ten times higher than that of transition state theory at low temperature (T=200 K), and (d) the equilibrium constants results indicate that the approximations applied may have different roles in the forward and reverse reactions.  相似文献   

6.
A rigorous full dimensional time-dependent wave packet method has been developed for the reactive scattering between an atom and a tetra-atomic molecule. The method has been applied to the hydrogen abstraction reaction H+NH(3)-->H(2)+NH(2). Initial state-selected total reaction probabilities are investigated for the reactions from the ground vibrational state and from four excited vibrational states of ammonia. The total reaction probabilities from two lowest "tunneling doublets" due to the inversion barrier for the umbrella bending motion of NH(3) and from two pairs of doubly degenerate vibrational states of NH(3) are also inspected. Integral cross sections and rate constants are calculated for the reaction from the ground state with the centrifugal-sudden approximation. The calculated results are compared with those from the previous seven dimensional calculations [M. Yang and J. C. Corchado, J. Chem. Phys. 126, 214312 (2007)]. This work shows that the full dimensional rate constants are a factor of 3 larger than the corresponding seven dimensional calculated values at T=200 K and are overall smaller than those obtained from the variational transition state theory in the whole temperature region. The work also reveals that nonreactive NH bonds of NH(3) cannot be treated as spectators due to the fact that three NH bonds are coupled with each other during the reaction process.  相似文献   

7.
The quantum wave packet dynamics of the title reaction within the coupled state approximation is examined here and initial state-selected reaction probabilities, integral reaction cross sections, and thermal rate constants are reported. The ab initio potential energy surface of the electronic ground state (1(2)A(")) of the system recently reported by Ho et al. [J. Chem. Phys., 119, 3063 (2003)] is employed in this investigation. All partial wave contributions up to the total angular momentum J=55 were necessary to obtain converged integral reaction cross sections up to a collision energy of 1.0 eV. Thermal rate constants are calculated from the reaction cross sections and compared with the available theoretical and experimental results. Typical resonances formed during the course of the reaction and elucidating the insertion type mechanism for the product formation are calculated. Vibrational energy levels supported by the deep well (approximately 5.5 eV) of the 1(2)A(") potential energy surface of NH(2) are also calculated for the total angular momentum J=0. A statistical analysis of the spacing between the adjacent levels of this energy spectrum is performed and the extent of irregularity in the spectral sequence is assessed.  相似文献   

8.
Using an exact Chebyshev wave packet method, initial state-specified (upsilon(i)=0, j(i)=0,2) integral cross-sections and rate constants are obtained for the title reaction on the latest ab initio potential energy surface. Reaction probabilities up to J=29 are dependent on the reactant rotation and show mild oscillations superimposed on a broad background. Due to a barrier in the entrance channel, the cross sections increase with energy with clear thresholds and the rate constants vary with temperature in the Arrhenius form. The calculated canonical rate constant is in good agreement with the experimental measurements. Our results also indicate that the quasiclassical trajectory method underestimates the rate due to the neglect of tunneling, while the quantum statistical approach overestimates because of the short lifetime of the reaction intermediate.  相似文献   

9.
A new global potential-energy surface for the ground electronic state of NH(2)(X (2)A(")) has been constructed by three-dimensional cubic spline interpolation of more than 20 000 ab initio points, which were calculated at the multireference configuration-interaction level with Davidson correction using the augmented correlation-consistent polarized valence quadruple-zeta basis set. The new potential is shown to yield better overall agreement with the experimental vibrational frequencies of NH(2) and its isotopomers. In addition, the rate constant for the N((2)D)+H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S) reaction was calculated up to 600 K and the agreement with experimental data is substantially improved over previous results.  相似文献   

10.
We present exact and estimated quantum differential and integral cross sections as well as product state distributions for the title reaction. We employ a time-dependent wavepacket method including all Coriolis couplings and also an adapted code where the helicity quantum number and with this the Coriolis couplings have been truncated. Results from helicity truncated as well as helicity conserving (HC) calculation are presented. The HC calculations fail to reproduce the exact results due to the influence of the centrifugal barrier. While the truncated calculation overestimate the exact integral cross sections they reproduce the features of the integral cross section very well. We also find that the product rotational state distributions are well reproduced if the maximum helicity state is chosen carefully. The helicity truncated calculations fail to give a good approximation of differential cross sections.  相似文献   

11.
Quantum scattering calculations are reported for the O(3P)+H2(v=0,1) reaction using chemically accurate potential energy surfaces of 3A' and 3A" symmetry. We present state-to-state reaction cross sections and rate coefficients as well as thermal rate coefficients for the title reaction using accurate quantum calculations. Our calculations yield reaction cross sections that are in quantitative accord with results of recent crossed molecular beam experiments. Comparisons with results obtained using the J-shifting calculations show that the J-shifting approximation is quite reliable for this system. Thermal rate coefficients from the exact calculations and the J-shifting approximation agree remarkably well with experimental results. Our calculations also reproduce the markedly different OH(v'=0)/OH(v'=1) branching in O(3P)+H2(v=1) reaction, observed in experiments that use different O(3P) atom sources. In particular, we show that the branching ratio is a strong function of the kinetic energy of the O(3P) atom.  相似文献   

12.
The radical-radical oxidation reaction, O(3P)+C3H3 (propargyl)-->H(2S)+C3H2O (propynal), was investigated using vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed-beam configuration, together with ab initio and statistical calculations. The barrierless addition of O(3P) to C3H3 is calculated to form energy-rich addition complexes on the lowest doublet potential energy surface, which subsequently undergo direct decomposition steps leading to the major reaction products, H+C3H(2)O (propynal). According to the nascent H-atom Doppler-profile analysis, the average translational energy of the products and the fraction of the average transitional energy to the total available energy were determined to be 5.09+/-0.36 kcal/mol and 0.077, respectively. On the basis of a comparison with statistical prior calculations, the reaction mechanism and the significant internal excitation of the polyatomic propynal product can be rationalized in terms of the formation of highly activated, short-lived addition-complex intermediates and the adiabaticity of the excess available energy along the reaction coordinate.  相似文献   

13.
The quantum wavepacket parallel computational code DIFFREALWAVE is used to calculate state-to-state integral and differential cross sections for the title reaction on the BKMP2 surface in the total energy range of 0.4-1.2 eV with D2 initially in its ground vibrational-rotational state. The role of Coriolis couplings in the state-to-state quantum calculations is examined in detail. Comparison of the results from calculations including the full Coriolis coupling and those using the centrifugal sudden approximation demonstrates that both the energy dependence and the angular dependence of the calculated cross sections are extremely sensitive to the Coriolis coupling, thus emphasizing the importance of including it correctly in an accurate state-to-state calculation.  相似文献   

14.
To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants, quasi-classical trajectory(QCT) calculation was performed on Ho’s potential energy surface(PES) of 2A″ state. Product polarizations such as product distributions of P(θr), P(φr) and P(θr,φr), as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions. Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.  相似文献   

15.
Recent molecular-beam experiments have probed the dynamics of the Rydberg-atom reaction, H(n)+D2-->HD+D(n) at low collision energies. It was discovered that the rotationally resolved product distribution was remarkably similar to a much more limited data set obtained at a single scattering angle for the ion-molecule reaction H++D2-->D++HD. The equivalence of these two problems would be consistent with the Fermi-independent-collider model (electron acting as a spectator) and would provide an important new avenue for the study of ion-molecule reactions. In this work, we employ a classical trajectory calculation on the ion-molecule reaction to facilitate a more extensive comparison between the two systems. The trajectory simulations tend to confirm the equivalence of the ion+molecule dynamics to that for the Rydberg-atom+molecule system. The theory reproduces the close relationship of the two experimental observations made previously. However, some differences between the Rydberg-atom experiments and the trajectory simulations are seen when comparisons are made to a broader data set. In particular, the angular distribution of the differential cross section exhibits more asymmetry in the experiment than in the theory. The potential breakdown of the classical model is discussed. The role of the "spectator" Rydberg electron is addressed and several crucial issues for future theoretical work are brought out.  相似文献   

16.
The radical-radical reaction dynamics of ground-state atomic oxygen [O(3P)] with t-butyl radicals (t-C4H9) in the gas phase were investigated using high-resolution laser spectroscopy in a crossed-beam configuration, together with ab initio theoretical calculations. The radical reactants, O(3P) and t-C4H9, were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of the precursor, azo-t-butane, respectively. A new exothermic channel, O(3P)+t-C4H9 --> OH+iso-C4H8, was identified and the nascent rovibrational distributions of the OH (X 2Pi: upsilon" = 0,1,2) products were examined. The population analyses for the two spin-orbit states of F1(2Pi32) and F2(2Pi12) showed that the upsilon" = 0 level is described by a bimodal feature composed of low- and high-N" rotational components, whereas the upsilon" = 1 and 2 levels exhibit unimodal distributions. No noticeable spin-orbit or Lambda-doublet propensities were observed in any vibrational state. The partitioning ratio of the vibrational populations (Pupsilon") with respect to the low-N" components of the upsilon" = 0 level was estimated to be P0:P1:P2 = 1:1.17+/-0.24:1.40+/-0.11, indicating that the nascent internal distributions are highly excited. On the basis of the comparison of the experimental results with the statistical theory, the reaction mechanism at the molecular level can be described in terms of two competing dynamic pathways: the major, direct abstraction process leading to the inversion of the vibrational populations, and the minor, short-lived addition-complex process responsible for the hot rotational distributions. After considering the reaction exothermicity, the barrier height, and the number of intermediates along the addition reaction pathways on the lowest doublet potential energy surface, the formation of CH3COCH3(acetone)+CH3 was predicted to be dominant in the addition mechanism.  相似文献   

17.
18.
19.
A single-sheeted DMBE potential energy surface is reported for the reactions N(4S)+H2<-->NH(X3Sigma-)+H based on a fit to accurate multireference configuration interaction energies. These have been calculated using the aug-cc-pVQZ basis set of Dunning and the full valence complete active space wave function as reference, being semi-empirically corrected by scaling the two-body and three-body dynamical correlation energies. The topographical features of the novel global potential energy surface are examined in detail, including a conical intersection involving the two first 4A' potential energy surfaces which has been transformed into an avoided crossing in the present single-sheeted representation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号