共查询到20条相似文献,搜索用时 78 毫秒
2.
微波辅助萃取-气相色谱测定土壤中多氯联苯 总被引:2,自引:0,他引:2
建立了微波辅助萃取-气相色谱-微电子捕获检测土壤样品中6种多氯联苯(pcb28, pcb52, pcb101, pcb138, pcb153和pcb180)的方法. 确定了以V(20 mL丙酮):V(正己烷)=1:1混合溶剂作萃取剂, 萃取温度110 ℃, 仪器功率800 W, 微波萃取5 min的样品前处理条件, 并用柱温程序优化了GC-μECD分析条件. 方法的检出限为0.027~0.087 ng/g; 相对标准偏差为3.4%~7.6% (n=6); 加标平均回收率79.8%~91.1%. 可用于土壤环境中多氯联苯的监测分析. 相似文献
3.
4.
土壤中痕量水胺硫磷的微波辅助萃取-固相微萃取-GC-MS法测定 总被引:5,自引:2,他引:5
研究了微波辅助萃取(MAE)-固相微萃取(SPME)联合萃取、气相色谱-质谱法(GC-MS)测定土壤中水胺硫磷的分析方法;采用正交设计试验优化了微波升温程序、萃取温度、萃取时间、萃取溶剂体积等MAE条件;研究了SPME萃取涂层、萃取时间、解吸温度等对萃取效率的影响;方法的线性范围在1.O~20μg/L之间,检出限为O.49ng/g;测定25、100ng/g加标土壤样品,回收率分别为79%和107%。RSD分别为2.6%和6.5%;方法综合了MAE快速高效和SPME富集浓缩的优点,以水为萃取溶剂,特别适合于固体样品中痕量有机物的分析。 相似文献
5.
微波萃取土壤中PAHs的研究 总被引:33,自引:0,他引:33
研究了MK-1型光纤压力自控微波溶样系统用于微波萃取的可行性.以合成土样为对象,比较系统地研究了微波萃取PAHs的条件、萃取效率以及溶剂、水分、土壤基体物质等因素的影响.在微波作用下丙酮-正已烷(体积比为1:1)和二氯甲烷对PAHs的萃取能力相近;试样中小于20%的水分使丙酮-正己烷(体积比为1:1)的萃取能力提高,而水分高于5%则使二氯甲烷的萃取能力略有降低.在选定条件下,萘、苊烯、芴、菲、蒽、(出)、苯并(a)芘的回收率在82.2%~94.1%之间. 相似文献
6.
7.
密闭系统中微波辅助萃取机制探讨 总被引:9,自引:2,他引:9
通过与普通加热萃取虎杖中白藜芦醇的产率进行对比 ,对密闭系统中微波辅助萃取的机理进行了探讨。结果表明 ,微波辅助萃取与普通加热萃取二者的活化能相差不大 ,分别为30.06和30.32kJ·mol-1。但微波辅助萃取的表观速率常数约是普通加热萃取的20倍。并且还利用电子扫描显微镜对样品微结构进行了观察 ,研究表明 ,细胞内极性成分如水吸收了微波能后压力迅速增加导致细胞结构的破坏是MAE快速高效的关键 ,由于细胞的破坏 ,萃取剂和萃取目标化合物更容易通过细胞壁 ,加速了扩散速度 ,进而加速了萃取速度。 相似文献
8.
9.
10.
砷钼蓝萃取光度法测定硫磺中微量砷 总被引:4,自引:0,他引:4
王湘硚 《理化检验(化学分册)》1995,31(1):52-53
工业硫磺中砷的测定常用二乙基二硫代氨基甲酸银的吡啶溶液吸收砷化氢法,该方法操作手续冗长、繁琐、试样中砷含量低时,分析结果不稳定。本文在前人经验的基础上,用砷钼蓝萃取光度法测定砷,利用试样溶解后生成的H_2SO_4(经多次测定1g硫磺生成H_2SO_4约2.444g),以稀释体积控制酸度在1~1.5mol·L~(-1)之间,As(Ⅴ)与钼酸铵生成黄色砷钼杂多酸,用乙酸乙脂-正丁醇萃取,SnCl_2还原生成砷钼蓝而测定砷。在0~20gg/25ml范围内服从比耳定律,操作简便,方法结果准确,重现性较好,能达到工业硫磺(GB 2449-81)中优级品砷量测定要求。 1 试验部分 1.1 试剂与仪器 Br_2-CCl_4溶液:2+3 次溴酸钠溶液:取饱和溴水45ml于塑料瓶中,加NaOH溶液(2%)30ml,水165ml,摇匀。 萃取剂:乙酸乙脂和正丁醇(均为分析纯)等体积 相似文献
11.
12.
13.
断续流动-氢化物发生-原子荧光光谱法测定木材中砷含量 总被引:6,自引:0,他引:6
采用断续流动进样氢化物发生,原子荧光光谱法测定木材中砷含量,确定了仪器的最佳工作条件,考察了酸度、预还原剂和还原剂用量和栽流流速的影响以及共存元素的干扰情况。在选定的测定条件下,砷的检出限为0.5μg/L,相对标准偏差为1.7%,回收率为95.8%~102.0%。 相似文献
14.
15.
16.
17.
建立了用阴离子交换树脂分离-氢化物发生原子荧光光谱法测定食品中无机砷、一甲基胂和二甲基胂的方法.分别从样品上样条件及二甲基胂、一甲基胂、 As(Ⅲ)和As(Ⅴ)分离条件进行了优化.研究了树脂处理程序对分离的影响,并探讨了共存离子对测定砷的干扰和消除的方法.对方法的适用范围做了研究.本方法具有操作简便、快速、灵敏度高等优点.检出限(以砷计)分别为: 无机砷0.34 μg/L,一甲基胂0.57 μg/L,二甲基胂0.46 μg/L. 相似文献
18.
Changjin Wei 《Talanta》2007,73(3):540-545
A novel procedure was developed for the determination of arsenite (As(III)), arsenate (As(V)), monomethylarsonic (MMA) and dimethylarsinic acid (DMA) with ion chromatography-hydride generation-atomic fluorescence spectrometry (IC-HG-AFS) by employing a new gas-liquid separator (GLS). The effective separation of the four arsenic species was achieved in about 12 min. With a sample loading volume of 20 μl, the measurable minimum for As(III), DMA, MMA and As(V) were 0.02, 0.045, 0.043 and 0.166 ng, respectively, along with relative standard deviations of 1.1, 1.1, 1.7 and 2.2% at the 100 μg l−1 level (n = 6) for As(III), DMA, MMA and As(V), respectively. The present procedure was applied for the speciation of arsenic in underground water and in urine samples, and the sum of the four arsenic species by IC-HG-AFS was in good agreement with the total value by HG-AFS. 相似文献
19.
20.
A software-controlled time-based multisyringe flow-injection system for total inorganic arsenic determination by hydride generation atomic fluorescence spectrometry (HGAFS) has been developed. By using a multisyringe burette coupled with one multiport selection valve, the time-based injection provides precise known volumes of sample, a reducing sodium tetrahydroborate solution and a pre-reducing solution which are dispensed into a gas-liquid separation cell. An argon flow delivers the arsine into the flame of an atomic fluorescence spectrometer. A hydrogen flow has been used to support the flame.Linear calibration graphs for arsenic concentrations between 0.25 and 12 μg l−1 were obtained. The detection limit of the proposed technique (3σb/S) was 0.07 μg l−1. A sample throughput of 36 samples/h (108 injections) has been achieved. The proposed technique has been validated by means of reference solid and water materials with good agreement with the certified values. This method was compared with those reported in previous sequential injection analysis (SIA) and flow-injection analysis (FIA) systems. The proposed method offers a number of advantages in front the usual AFS applications, which are mainly a higher sampling frequency and a significant reduction in reagent consumption. 相似文献