首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
P.K. Shukla 《Physics letters. A》2010,374(35):3656-3657
Properties of electrostatic waves in ultracold neutral plasmas (UNPs) are examined, taking accounting the polarization force arising from interactions between the thermal electrons and strongly coupled ions. It is found that the polarization force reduces the phase speed of the modified dispersive ion-acoustic (M-DIA) wave in UNPs. Possibility of the ion-lattice formation in the presence of the M-DIA wave is discussed.  相似文献   

3.
The physical mechanism of the energy-momentum transfer governing the propagation of electrostatic waves in collisionsless plasmas is presented. Plasma is supposed to be immersed in external uniform crossed magnetic and electric field. The equilibrium plasma, determined by a stationary distribution of charged particles, is assummed to be generally anisotropic and weakly nonuniform. The changes in macroscopic quantities (in the kinetic energy of perpendicular and parallel motion, etc.) due to the self-consistent wave-particle interaction are derived. It is shown, that the corresponding dispersion equation is identical with the energy-momentum balance equations expressed in the wave frame. A new expression of the energy of waves (plasmons) is given, which ensures the energy-momentum balance equations to be mutually independent equations. This differs from the usual expression of the wave energy leading to energy-momentum balance equations which are not mutually independent.  相似文献   

4.
The propagation of light waves in an underdense plasma is studied using one-dimensional Vlasov-Maxwell numerical simulation.It is found that the light waves can be scattered by electron plasma waves as well as other heavily and weakly damping electron wave modes,corresponding to stimulated Raman and Brilluoin-like scatterings.The stimulated electron acoustic wave scattering is also observed as a high scattering level.High frequency plasma wave scattering is also observed.These electron electrostatic wave modes are due to a non-thermal electron distribution produced by the wave-particle interactions.The collision effects on stimulated electron acoustic wave and the laser intensity effects on the scattering spectra are also investigated.  相似文献   

5.
6.
7.
8.
Space plasmas often possess non-Maxwellian distribution functions which have a significant effect on the plasma waves.When a laser or electron beam passes through a dense plasma,hot low density electron populations can be generated to alter the wave damping/growth rate.In this paper,we present theoretical analysis of the nonlinear Landau damping for Langmuir waves in a plasma where two electron populations are found.The results show a marked difference between the Maxwellian and non-Maxwellian instantaneous damping rates when we employ a non-Maxwellian distribution function called the generalized(r,q)distribution function,which is the generalized form of the kappa and Maxwellian distribution functions.In the limiting case of r=0 and q→∞,it reduces to the classical Maxwellian distribution function,and when r=0 and q→κ+1,it reduces to the kappa distribution function.  相似文献   

9.
The surface plasmon damping due to carriers scattering at the statistically rough (semiconductor-dialectric) interface is considered. The specular parameter and the integral relation are used as the boundary condition for a non-equilibrium part of the distribution function. There exist certain cases when the rough surface scattering of carriers is shown to play an important role in the surface plasmon damping.  相似文献   

10.
刘三秋  陈小昌 《中国物理 B》2011,20(6):65201-065201
The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression for the Landau damping is obtained in an ultra-relativistic regime, which is related to q-parameter. In the limit q → 1, the result based on the relativistic Maxwellian distribution is recovered. It is shown that the interactions between the wave and particles are stronger and the waves are more strongly damped for lower values of q-parameter. The results are explained by the increased number of superthermal particles or low velocity particles contained in the plasma with the nonextensive distribution.  相似文献   

11.
The effect of phase vortices on the enhanced coherent backscattering from volume scattering media is studied theoretically and experimentally. The experimental results are well described by a theoretical model based on the diffusion approximation corrected for small path lengths contributions. Based on this approach, a self-referencing method for measuring the optical characteristics of a multiple scattering medium can be developed.  相似文献   

12.
The basic features and multi-dimensional instability of electrostatic (EA) solitary waves propagating in an ultra-relativistic degenerate dense magnetized plasma (containing inertia-less electrons, inertia-less positrons, and inertial ions) have been theoretically investigated by reductive perturbation method and small-k perturbation expansion technique. The Zakharov-Kuznetsov (ZK) equation has been derived, and its numerical solutions for some special cases have been analyzed to identify the basic features (viz. amplitude, width, instability, etc.) of these electrostatic solitary structures. The implications of our results in some compact astrophysical objects, particularly white dwarfs and neutron stars, are briefly discussed.  相似文献   

13.
14.
The parametric decay of an obliquely propagating extraordinary electromagnetic wave into another extraordinary electromagnetic wave and a low-frequency electrostatic ion-Berstein wave via the stimulated Brillouin scattering process is considered. Explicit expressions for the growth rate and threshold power for this instability are presented. Applications of the present investigation to fusion plasmas in the end cells of tandem mirrors and the magnetospheric and ionospheric plasmas to explain wave phenomena are pointed out. The dependence of threshold power on the pump wave angle is studied. The general expressions for the growth rate and threshold derived here can also be useful to explain future experimental data  相似文献   

15.
We propose a general method to realize a total scattering of an incident acoustic wave at interfaces between different media while allowing the flow of air, fluids and/or particles. This originates from the enlargement of the equivalent acoustic scattering cross section of an embedded object coated with acoustic metamaterials, which causes the coated object to behave as a scatterer bigger than its physical size. We theoretically design a model circular cylindrical object coated with such metamaterials whose properties are determined according to two different, but identical, methods. The desired function is confirmed for both far-field and near-field cases with full wave simulations based on the finite element method. This work reveals a promising way to achieve noise shielding and naval camouflage.  相似文献   

16.
Overpopulation densities Δnitij, which are defined as the differences between the population densities per unit statistical weight of the upper and lower excited levels i and j, are calculated as a function of the electron density ne for various electron temperatures Te in recombining hydrogen plasmas. Calculation have been made for line pairs with principal quantum numbers (2 ,3), (3, 4) and (4, 5). The effect of the ground-level population density n1 on Δnij is calculated. In this calculation, the atom-atom collision and the self-absorption of the resonance lines are taken into account. The n1-dependence of Δnij remains almost constant until the self-absorption becomes significant. The threshold condition for laser oscillation is discussed in relation to the calculated Δnij. Laser oscillation is possible for the line pair (2, 3) at an electron density and temperature higher than for the other pairs (3, 4) and (4, 5) when self-absorption is negligible.  相似文献   

17.
Based on the quantum Magnetohydrodynamic (QMHD) model, the obliquely propagation of electrostatic waves in degenerate magnetized quantum plasmas with electron exchange-correlation effects are theoretically investigated. The modified linear dispersion relations of electrostatic waves are obtained and discussed in some specific cases. The analytical results clearly show that the dispersion properties of the high frequency electron waves (including the Langmuir wave and upper-hybrid wave) and the low frequency ion acoustic wave are modified by the quantum effects together with the electron exchange-correlation effects. The numerical results depict that the Langmuir wave and upper-hybrid wave can be unstable in the presence of the electron exchange-correlation effects, and it is also evidently indicated that the electron exchange-correlation effects can reduce the phase velocity of the waves, especially in the high wave number region. The corresponding results should be of relevance for identifying electrostatic fluctuations which transport in an inhomogeneous and magnetized quantum plasmas.  相似文献   

18.
We have measured the characteristics of saturated ion-acoustic waves in inertial confinement fusion plasmas. A 263-nm probe laser has been applied to simultaneous Thomson scatter on both ion-acoustic waves excited by thermal electrostatic fluctuations and by stimulated Brillouin scattering of a kilojoule laser beam of varying intensity. The Thomson scattering spectra show saturated ion-wave amplitudes for intensities above 5x10(14) W cm(-2) consistent with three dimensional nonlinear wave modeling.  相似文献   

19.
We demonstrate that multiple-ion-species plasmas greatly reduce stimulated Brillouin scattering (SBS) in high-electron temperature inertial confinement fusion hohlraums. Landau damping is increased by adding hydrogen to a CO(2) gas filled hohlraum. We find that the SBS reflectivity decreases monotonically with increasing hydrogen fraction from 18% to 3% with a simultaneous increase of laser beam transmission. Detailed simulations with a 3D laser-plasma interaction code are in agreement with the experimentally observed reduction in backscattered light.  相似文献   

20.
The Green's function of a magnon interacting with conduction electrons which move in an arbitrary non-periodic potential field is calculated within thes-d(f) exchange model. The contribution of the lowest order damping to the spin-wave resonance linewidth is discussed. The temperature and wavevector dependences of the second order damping due to the electron-magnon scattering are investigated. The local and optical magnon modes are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号