首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The character of temperature dependences of the electric conductivity of MgB2 granular BCS superconductors at temperatures of ~35–45 K in external magnetic fields H ext of up to ~2 kOe is studied. An increase in the superconducting transition width ΔT c with an increase in Hext is found. The presence of a system of weak links in MgB2-based granular superconductors is established. On the basis of experimental data, MgB2 granular superconductor is assigned to two-level superconducting systems and the H–T phase diagram is constructed.  相似文献   

2.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

3.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

4.
The temperature dependence of the excess conductivity Δσ for Δσ = A(1 ? T/T*)exp(Δ*/T) (YBCO) epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resistance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the temperature dependence of the excess conductivity is adequately described by the relationship Δσ = A(1 ? T/T*)exp(Δ*/T). The pseudogap width and its temperature dependence are calculated under the assumption that the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at temperatures well above the critical temperature T c of superconductivity. The results obtained are compared with the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical temperature T c is discussed.  相似文献   

5.
The structure of an isolated vortex line, and the lower critical fieldH c 1, is calculated by means of the generalized Ginzburg-Landau (GL) theory for arbitrary values of the GL-parameterk(≧1/√2) and the mean free pathl at temperaturesT in the vicinity ofT c . The free energy functional including the corrections of order [1?(T/T c )] to the GL-functional is derived exactly. The corresponding Euler-Lagrange equations determining the zero-order (GL) contributions and the corrections of order [1?(T/T c )] to the order parameter,f(r), and the superfluid velocity,v(r), have been solved numerically. The shapes of the first-order corrections off(r), v(r), and the magnetic field,h(r) are found to depend markedly, for a given value ofκ, on a second parameter,α=0.882(ξ 0 /l) (whereξ 0 is theBCS-coherence-distance). The deviations from the GL-solutions become largest forh(r) at parameter valuesk≈ 1 andα ≈ 0(the deviation ofh(0) is about 6% atT=0.9T c forκ=1 andα=0). The ratioH c1/H c (where the thermodynamic criticalH c has the BCS-temperature-dependence) is found to increase slightly in the “clean” limit (α=0), and to decrease slightly in the “dirty” limit (α=∞) asT decreases (the variation ofH c 1/H c is always less than 3% for arbitrary values ofκ andα asT decreases fromT c to 0.9T c ).  相似文献   

6.
We study the conductivity of two-dimensional interacting electrons on the half-filled Nth Landau level with N?1 in the presence of quenched disorder. The existence of the unidirectional charge-density wave state at temperature T<T c , where T c is the transition temperature, leads to the anisotropic conductivity tensor. We find that the leading anisotropic corrections are proportional to (T c ?T)/T c just below the transition, in accordance with the experimental findings. Above T c , the correlations corresponding to the unidirectional charge-density wave state below T c result in corrections to the conductivity proportional to \(\sqrt {{{T_c } \mathord{\left/ {\vphantom {{T_c } {T - T_c }}} \right. \kern-\nulldelimiterspace} {T - T_c }}} \).  相似文献   

7.
Holographic superconductors containing a non-minimal derivative coupling for the scalar field in a regular phantom plane symmetric black hole have been considered. We show that the parameter of the regular black hole b as well as the non-minimal derivative coupling parameter η affect the formation of the condensate as well as the conductivity in the superconductor. Moreover, b has a critical value in which the critical temperature Tc increases without a bound.  相似文献   

8.
Mössbauer spectroscopy in the ferromagnetic AlFe2 B 2 reveals Tc=299 K and shows good agreement with magnetic measurements. The crystals are plate-shaped. The flakes are found from X-ray diffraction to be in the crystallographic ac-plane in the orthorhombic system. The axes of the principle electric field gradient tensor are, by symmetry, colinear with the crystal a-, b- and c-axes. By using information about the quadrupole splitting and line asymmetry in the paramagnetic regime together with the quadrupole shift of the resonance lines in the ferromagnetic regime the magnetic hyperfine field direction is found to be in the ab-plane having an angle =40° to the b-axis.  相似文献   

9.
The critical magnetic fields H c and H c2 are measured for thin films of the isotropic superconductor NbC. It is revealed that the critical fields exhibit strong anisotropy due to the vortex-free state of the film in a magnetic field aligned parallel to its surface. The H c/H c2 ratio at 2 K exceeds 6 and increases with increasing temperature. The dependence H c(T) agrees quantitatively with the concepts of microscopic theory on the vortex-free state of a thin film of a clean superconductor in the temperature range below T c . As the electron mean free path decreases under irradiation of the film with a low dose of He+ ions, the critical field H c remains unchanged near T c but increases significantly at lower temperatures. The well-known theoretical models are used to estimate the electronic parameters and thicknesses of MgB2 films for which the specific features associated with the vortex-free state of the two-gap superconductor can manifest themselves in the temperature dependence of the critical magnetic field H c(T).  相似文献   

10.
The conductivity and the Hall coefficient of a doped 2D antiferromagnet in the normal state are considered using the Kondo lattice model in the multimoment approximation. The anomalous temperature dependence of the kinetic coefficients is explained by the strong anisotropic charge-carrier scattering from the spin subsystem and found to be in qualitative agreement with the experimental data for the normal state of high-T c superconductors.  相似文献   

11.
The Efros-Shklovskii (E-S) law for the conductivity of granular metals is interpreted as a result of a variable-range cotunneling process. The cotunneling between distant resonant grains is predominantly elastic at low TT c , while it is inelastic (i.e., accompanied by creation of electron-hole pairs on a string of intermediate non-resonant grains) at TT c . The corresponding E-S temperature T ES , in the latter case, is slightly (logarithmically) T dependent. The magnetoresistance in the two cases is different: it may be relatively strong and negative at T?T c , while, at T > T c , it is suppressed due to inelastic processes, which destroy the interference.  相似文献   

12.
Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-T c superconductivity.  相似文献   

13.
The temperature dependences of the specific heat C(T) and thermal conductivity K(T) of MgB2 were measured at low temperatures and in the neighborhood of T c . In addition to the well-known superconducting transition at T c ≈40 K, this compound was found to exhibit anomalous behavior of both the specific heat and thermal conductivity at lower temperatures, T≈10–12 K. Note that the anomalous behavior of C(T) and K(T) is observed in the same temperature region where MgB2 was found to undergo negative thermal expansion. All the observed low-temperature anomalies are assigned to the existence in MgB2 of a second group of carriers and its transition to the superconducting state at Tc2≈10?12 K.  相似文献   

14.
Based on the previously suggested model of nanoscale dislocation-induced Josephson junctions and their arrays, we study the magnetic-field-induced electric polarization effects in intrinsically granular superconductors. In addition to the new phenomenon of chemomagnetoelectricity, the model also predicts a few other interesting effects, including charge analogs of Meissner paramagnetism (at low fields) and a “fishtail” anomaly (at high fields). The conditions under which these effects can be experimentally measured in nonstoichiometric high-Tc superconductors are discussed.  相似文献   

15.
The upper critical field,H c2, is calculated in the temperature range close toT c for arbitrary values of the mean free path 1. The method is to treat the fourth-order term in the linearized differential equation for the gap parameter as a perturbation to the harmonic oscillator equation. The Nambu-Tuan term, which determines the structure of the “clean-limit” and “dirty-limit” parts of the fourth-order term, is calculated by means of the ladder diagram technique for impurity interaction lines. The result is that the magnitude of the slope of the curveH c2/√2H c κ versust=T/T c att=1 decreases monotonically from the value 0.41 to 0.12 as the ratio of the BCS coherence lengthξ 0 to the mean free path 1 increases from 0 to ∞. For 1?ξ 0 this slope is about 0.26.  相似文献   

16.
The temperature dependence of the surface upper critical field,H c3, nearT c is calculated for arbitrary values of the mean free pathl by taking into account the fourthorder term of the generalized Ginzburg-Landau theory. For finitel the boundary condition is modified such that the normal derivative of the energy gap at the surface becomes positive. The slope of the curveH c3/H c2 versust=T/T c att=1 is found to decrease monotoneously from zero to ?1.040 as one goes from the “dirty” to the “clean” limit.  相似文献   

17.
The dependences of the resistance of the layered quasi-one-dimensional semiconductor TiS3 on the direction and magnitude of the magnetic field B have been measured. The anisotropy and angular dependences of the magnetoresistance indicate the two-dimensional character of the conductivity at T < 100 K. Below T0 ≈ 50 K, the magnetoresistance for the directions of the field in the plane of the layers (ab plane) increases sharply, whereas the transverse magnetoresistance (Bc) becomes negative. The results confirm the possibility of an electron phase transition to a collective state at T0. The negative magnetoresistance (at Bc) below T0 is explained by the magnetic-field-induced suppression of two-dimensional weak localization. The positive magnetoresistance (at Bab) is explained by the effect of the magnetic field on the spectrum of electronic states.  相似文献   

18.
Systematic ab initio LDA calculations were performed for all the typical representatives of recently discovered class of iron-based high-temperature superconductors: REOFe(As,P) (RE = La, Ce, Nd, Sm, Tb), Ba2Fe2As, (Sr,Ca)FFeAs, Sr4Sc2O6Fe2P2, LiFeAs and Fe(Se,Te). Non-monotonic behavior of total density of states at the Fermi level is observed as a function of anion height relative to Fe layer with maximum at about Δz a ~ 1.37 Å, attributed to changing Fe-As (P, Se, Te) hybridization. This leads to a similar dependence of superconducting transition temperature T c as observed in the experiments. The fit of this dependence to elementary BCS theory produces semiquantitative agreement with experimental data for T c for the whole class of iron-based superconductors. The similar fit to Allen-Dynes formula underestimates T c in the vicinity of the maximum, signifying the possible importance of non-phonon pairing in this region. These results unambiguously demonstrate that the main effect of T c variation between different types of iron-based superconductors is due to the corresponding variation of the density of states at the Fermi level.  相似文献   

19.
A cellular superconducting material consisting of thin (1–20 μm) MgB2?x layers and magnesium granules of about 100 μm has been produced. The critical temperature T c of this superconductor decreases with the thickness of the MgB2?x layers. In unalloyed magnesium diboride, the curvature of the temperature dependence of the upper critical field H c2(T) changes gradually from downward to pronounced upward as the temperature T c decreases from 38 to 36 K.  相似文献   

20.
We show that the superconducting transition temperature T c (H) of a very thin highly disordered film with strong spin-orbital scattering can be increased by a parallel magnetic field H. This effect is due to the polarization of magnetic impurity spins, which reduces the full exchange scattering rate of electrons; the largest effect is predicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations, the phenomenon of superconductivity induced by magnetic field is predicted: the superconducting transition temperature T c (H) is found to be nonzero in the range of magnetic fields 0 < H* ≤ HH c .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号