首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
李国旗  张小超  丁光月  樊彩梅  梁镇海  韩培德 《物理学报》2013,62(12):127301-127301
基于密度泛函理论的第一性原理方法研究了BiOCl{001}的三种不同终端面({001}-1Cl, {001}-BiO 和{001}-2Cl)的表面弛豫、能带结构、电子态密度和表面能. 计算结果表明: {001}-1Cl, {001}-BiO和{001}-2Cl表面均发生明显弛豫, 而在双Cl原子层处的层间距变化较大, 但未出现振荡弛豫现象, 其中{001}-1Cl表面弛豫较小. 与体相BiOCl电子结构相比, BiOCl{001}面具有较窄的带隙宽度, 并呈现较强局域性:对于{001}-BiO表面, 其导带与价带均往低能方向发生较大移动, 并且在导带底部出现表面态; 而{001}-2Cl表面的表面态主要出现在价带顶; {001}-1Cl表面的带隙中则无表面态产生; 表面态的出现导致{001}-BiO面和{001}-2Cl面带隙明显减小. BiOCl{001}三种终端表面的表面能分析结果表明, {001}-1Cl表面的表面能最小(0.09206 J·m-2), 结构最稳定, 而{001}-BiO表面和{001}-2Cl表面的表面能分别为2.392和2.461 J·m-2. 理论预测{001}-BiO表面和{001}-2Cl表面具有较高的活性, 但在BiOCl晶体生长过程中不易暴露. 本文计算结果为实验获得BiOCl高活性面{001}给予了基础理论解释, 进一步为BiOCl新型光催化材料的应用研究提供理论指导. 关键词: BiOCl{001}表面 表面弛豫 表面能 第一性原理  相似文献   

2.
J.H. Dai  Y. Song  R. Yang 《Surface science》2011,605(13-14):1224-1229
First principle calculations have been performed to explore the adsorption characteristics of water molecule on (001) and (110) surfaces of magnesium hydride. The stable adsorption configurations of water molecule on the surfaces of MgH2 were identified by comparing the total energies of different adsorption states. The (110) surface shows a higher reactivity with H2O molecule owing to the larger adsorption energy than the (001) surface, and the adsorption mechanisms of water molecule on the two surfaces were clarified from electronic structures. For both (001) and (110) surface adsorptions, the O p orbitals overlapped with the Mg s and p orbitals leading to interactions between O and Mg atoms and weakening the O–H bonds in water molecule. Due to the difference of the bonding strength between O and Mg atoms in the (001) and (110) surfaces, the adsorption energies and configurations of water molecule on the two surfaces are significantly different.  相似文献   

3.
Density functional theory (DFT) calculations of the calcium tungstate material scheelite CaWO4 have shown that water introduced into the bulk material remains undissociated and leads to swelling and layering of the structure, a behaviour which may resemble silicate clays more than three-dimensional poly-anionic materials, but which results in a structure that is even more similar to a rare hydrous calcium carbonate phase--a finding which suggests the existence of semi-crystalline hydrous pre-cursor phases to the dehydrated scheelite material. An interatomic potential model was derived for CaWO4 which adequately reproduces structural and physical properties of the material and is in good agreement with the DFT calculations in respect of the structure and energy of hydration (DFT: 85 kJ mol−1, atomistic: 105 kJ mol−1). Atomistic simulations of a range of scheelite surfaces confirm the dominance of the experimental {1 0 1} and {0 0 1} cleavage planes in the morphology of the dry crystal and the presence of the experimentally found {1 0 3} and {1 0 1} surfaces in the hydrated morphology. Hydration of the surfaces shows non-Langmuir behaviour, where the interactions between surface calciums and oxygen atoms of the water molecules outweigh hydrogen-bonding to the surface oxygen atoms or intermolecularly within the water layer. The hydration energies indicate physisorption of water, ranging from 22 kJ mol−1 on the {0 0 1} surface to 78 kJ mol−1 on the more reactive {1 0 3} surface.  相似文献   

4.
Constant-area and fully relaxed molecular dynamics methods are employed to study the properties of the surface and point defects at and near {001} surfaces of bulk and thin-film Ni, Al and Ni3Al respectively. The surface tension is larger than the surface energy for all {001} surfaces considered in the sequence: Al (1005?mJ?m?2)<?Ni3Al (mixed Ni–Al plane outermost, 1725?mJ?m?2)<?Ni3Al (all-Ni-atoms plane outermost, 1969?mJ?m?2)<?Ni (1993?mJ?m?2). For a surface of bulk Ni3Al crystal with a Ni–Al mixed plane outermost, Al atoms stand out by 0.0679?Å compared with the surface Ni atoms and, for the all-Ni-atoms surface, Al atoms in the second layer stand out by 0.0205?Å compared with Ni atoms in the same layer. Vacancy formation energies are about half the bulk values in the first layer and reach a maximum in the second layer where the atomic energy is close to the bulk value but the change in embedding energy of neighbouring atoms before and after vacancy formation is greater than that in the bulk. Both the vacancy formation energy and the surface tension suggest that the fourth layer is in a bulk state for all the surfaces. The formation energy of adatoms, antisite defects and point-defect pairs at and near {001} surfaces of Ni3Al are also given.  相似文献   

5.
The adsorption and desorption chemistry of NO on the clean Rh{111} and Rh{331} single crystal surfaces was followed with SIMS, XPS, and LEED. Results suggest dissociative NO adsorption occurs at step and/or defect sites. At saturation coverage there was ~ 10 times more dissociated species on the Rh{331} surface at 300 K than on the Rh{111} surface. On both surfaces two molecular states of NOads have been identified as β1, and β2 which possess different chemical reactivity. Under the condition of saturation coverage the β1 and β2 states are populated on the Rh{111} surface in a different proportion than on the Rh{331} surface. Further, their population on both surfaces is coverage and temperature dependent. When the sample is heated to desorb the saturation overlayer formed on the Rh{111} and Rh{331} crystal surfaces, approximately 50% of the overlayer is found to desorb below ? 400 K primarily from the β2 state, molecularly as NO(g). Between 300 and 400 K the β1 state dissociates as binding sites necessary to coordinate Nads and Oads are freed by desorption of NO(g).  相似文献   

6.
The surface electric property of Cu2O microcrystal affects the interaction of facets with substance in the aqueous solution, and hence plays a key role in determining the photocatalytic activity. In this paper, the capability of Cu2O microcrystals with exclusive {111}, {110} or both lattice surfaces in reducing Ag+ to Ag0 were investigated. Ag particles selectively deposited on {111} surfaces of Cu2O, while not on {110} surfaces. The different behaviors of the two surfaces are mainly attributed to their different electric properties: negatively-charged {111} surfaces absorb Ag+ ions while positively-charged {110} surfaces repel them. Raman scattering of Cu2O {111} surfaces was enhanced by the photo-deposition of Ag particles.  相似文献   

7.
8.
CeO2 nanocrystals (CN) with different morphologies (i.e., cube, octahedron, and rod) are prepared and the facet‐dependent effect of these CeO2 nanocrystals on the adsorption and dephosphorylation of phosphorylated molecules is investigated for the first time using the model p‐nitrophenyl disodium orthophorphate (p‐NPP). Due to their different surface atomic configurations, the {111} and {110} facets have much higher adsorption capacity and kinetic catalytic activities than {100} facets. All the CeO2 nanocrystals can intensely promote the dephosphorylation reaction owing to the strong interaction between Ce cations and phosphoryl oxygens resulting in the cleavage of phosphoester bonds. As was expected, the above facet‐dependent effect can be verified by the practical application results of the CeO2 nanocrystals on the capture and dephosphorylation of phosphopeptides. Thus, surface engineering could be a useful and feasible strategy for not only fundamentally understanding the interaction between crystal facets and molecules but also effectively developing high‐performance functional materials.  相似文献   

9.
田晓庆 《物理学报》2008,57(1):286-289
In this paper the growth mechanism of a Te/Bi$_{2}$Te$_{3}$ novel structure is studied by \textit{ab-initio} calculations. The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces. The adsorption energy of Te on the Te (001) surface is 3.29 eV, which is about 0.25 eV higher than that of Te on the Te (110). This energy difference makes the preferential growth direction along the $<001>$ direction. In addition, the higher surface energy of Bi$_{2}$Te$_{3}$ (110) and the lattice misfit between crystalline Bi$_{2}$Te$_{3}$ and Te along $<001>$ direction are considered to explain the growth of the Bi$_{2}$Te$_{3}$ nanoplatelets, in which Volmer--Weber model is used. The theoretical results are in agreement with experimental observation.  相似文献   

10.
In order to demonstrate the adsorption of the nitrogen monoxide molecule (NO) on the LaO (001) surface of LaFeO3, we perform simulations based on density functional theory. The generalized gradient approximation (GGA) for the exchange-correlation energy functional indicates that the electronic state of the LaFeO3 bulk is an anti-ferromagnetic insulator with a local magnetic moment of 4.1 μB at each Fe atom. Using the ultrasoft pseudo-potential method with spin-polarized GGA, fully optimized internal parameters as well as charge and spin density are determined for the NO-adsorbed structure prepared in a slab model. The calculated adsorption energy of NO is around ? 1.4 eV on the LaO (001) surface of LaFeO3. This value decreases down to ? 4.46 eV at an oxygen vacancy site, where the nitrogen atom of NO is embedded in the 1st LaO layer forming a bond with Fe in the 2nd FeO layer.  相似文献   

11.
The atomic and electronic properties of the adsorption of tert-butanol [(CH3)3OH] molecule on the Si(001)-(2×1) surface have been studied by using the ab-initio density functional theory (DFT) based on pseudopotential approach. We have found that tert-butanol bonded the Si(001) surface by oxygen atom, cleaving a O–H bond and producing a Si-H bond and tert-butoxy surface species. We have also investigated the influence of chemisorption of tert-butanol on the electronic structure of the clean Si(001)-(2×1) surface. Two occupied surface states situated entirely below the bulk valence band maximum have been identified, which means that the clean Si(001)-(2×1)surface was passivated by the chemisorption of tert-butanol. In order to explain the nature of the surface components we have also plotted the total and partial charge densities at the [`(K)]\bar{K} point of the surface Brillouin zone (SBZ).  相似文献   

12.
Density-functional calculations of molecular nitric oxide (NO) on defective (La,Sr)O (001) surfaces of (La,Sr)FeO3 ? δ using slab models are performed to elucidate the oxygen vacancy formation problem on the LaO (001) surface of LaFeO3 ? δ.From the estimation of the NO adsorption energy, NO adsorption is found on (La,Sr)O surfaces of (La0.83,Sr0.17)FeO3 ? δ with δ = 0 or 0.25.The absolute value of the NO adsorption energy shows a remarkable increase at oxygen vacancies in the top surface layer, where the nitrogen atoms of the adsorbed molecules are embedded in the first (La,Sr)O layer, because a bond with Fe in the second FeO2 layer is formed.Our data shows that Sr doping promotes formation of oxygen vacancies, which keep the NO adsorption ability high.Thus, we conclude that if Sr doping increases the number of oxygen vacancy sites by a charge compensation effect, NO adsorption on LaFeO3 is enhanced, which provides an explanation for several experimental observations.  相似文献   

13.
魏彦薇  杨宗献 《物理学报》2008,57(11):7139-7144
采用基于广义梯度近似的投影缀加平面波(projector augmented wave)雁势和具有三维周期性边界条件的超晶胞模型,用第一性原理方法,计算并分析了Au在CeO2(110)和Zr掺杂的CeO2(110) 面的吸附能,吸附结构和电子结构等特征.从而得出Zr掺杂对Au/CeO2(110)吸附体系的影响.结果表明:Zr的掺杂增大了Au在CeO2(110) 面的吸附能,并改变了最强吸附位置,且导致了吸附体系中衬底结 关键词: Au Zr掺杂 2')" href="#">CeO2 吸附  相似文献   

14.
《Surface science》1987,180(1):89-109
The reaction rates of CO and H2 with preadsorbed oxygen on copper surfaces in the 〈110〉 zone presented by a cylindrical single crystal are found to display strong structural sensitivity. In both cases the highest reaction rates are observed for surface structures involving both steps and low index face terraces, and in particular surfaces vicinal to {311} and between either {111} or {100} are found to exhibit the highest rates of reaction. Possible mechanisms for the reaction are discussed, and the data are extrapolated to investigate the steady state oxidation of CO in a CO/O2 gas mixture over copper surfaces in the 〈110〉 zone. The semi-empirical model describing the steady state oxidation reaction predicts that this reaction also exhibits marked crystallographic anisotropy at CO/O2 partial pressures chosen to maximise the reaction rate.  相似文献   

15.
Iridium adsorption on γ-Al2O3 (001) surface has been studied using the ab initio calculation method and the electronic structures of the bare and the Ir adsorbed γ-Al2O3 (001) surfaces have been analyzed. By modeling different adsorption sites, one can conclude that the energetically most favorable sites for the Ir are the top sites of the O atoms at the γ-Al2O3 (001) surface terminated with octahedral Al. Charge redistribution around the Ir atom adsorbed on the surface improves the activity of the Ir atom as a catalyst.  相似文献   

16.
L.E. Firment 《Surface science》1982,116(2):205-216
Temperature dependent faceting of rutile TiO2 surfaces cut to the (001) plane has been reported [Tait and Kasowski, Phys. Rev. B20 (1979) 5178]. By comparing LEED data to beam positions calculated for various sets of facet planes, the facet planes have been identified. The first ordered structure observed on annealing ion bombarded surfaces is composed of {011} facets with the facet planes in a (2 × 1) reconstruction. The high temperature structure produced on annealing above 1300K is best described as {114} facets; however, there are deviations of the observed LEED pattern from that calculated for {114} facets, possibly because of the presence of related planes. LEED data have now been obtained on the behavior of (110), (100), (011), (114), and (001) surfaces in UHV. The observed stability of TiO2 surfaces can be related to the Ti ion coordination numbers in the surface plane as derived from stoichiometric terminations of the rutile lattice.  相似文献   

17.
Xiao Han 《Molecular physics》2013,111(24):3546-3555
The trapping and detection of nitrogen oxide with tungsten trioxide has become a popular research topic in recent years. Knowledge of the complete reaction mechanism for nitrogen oxide adsorption is necessary to improve detector performance. In this work, we used density functional theory (DFT) calculations to study the adsorption characteristics and electron transfer of nitrogen dioxide on an oxygen-deficient monoclinic WO3 (0 0 1) surface. We observed different reactions of NO2 on slabs with different O- and WO-terminated WO3 (0 0 1) surfaces with oxygen vacancies. Our calculations show that the bridging oxygen atom on an oxygen defect on an O-terminated WO3 (0 0 1) surface is the active site where an NO2 molecule is oxidised into nitrate and is adsorbed onto the surface. On a WO-terminated (0 0 1) surface, one of the oxygen atoms from the NO2 molecule fills the oxygen vacancy, and the resulting NO fragment is adsorbed onto a W atom. Both of these adsorption models can cause an increase in the electrical resistance of WO3. We also calculated the adsorption energies of NO2 on slabs with different oxygen-deficient WO3 surfaces.  相似文献   

18.
The adsorption energies, bond order, atomic charge, optical properties, and electrostatic potential of nitrogen molecules of armchair single-walled carbon nanotubes (SWCNTs) and nitrogen-doped single-walled carbon nanotubes (N-SWCNTs) were investigated using density functional theory (DFT). Our results show that adsorption of the \(\hbox {N}_{2}\) molecules on the external wall of a nanotube is more effective than on the internal wall in SWCNTs. The results show that \(\hbox {N}_{2}\) molecule(s) are weakly bonded to SWCNTs and N-SWCNTs through van der Waals-type interactions. The interaction of \(\hbox {N}_{2}\) molecules with SWCNTs and N-SWCNTs is physisorption as the adsorption energy and charge transfer are small, and adsorption distance is large. The electronic transitions from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) (\(\hbox {H}\rightarrow \hbox {L}\)) have the maximum wavelength and the lowest oscillator strength. The potential sensor on the surface of pristine SWCNTs and N-SWCNTs for the adsorption of \(\hbox {N}_{2}\) molecule(s) is investigated. The N-loaded single-walled carbon nanotube is introduced as a better \(\hbox {N}_{2}\) molecule(s) detector when compared with SWCNTs.  相似文献   

19.
Facet engineering of nanocomposite has been confirmed to be an efficient strategy to accelerate their catalytic performances, but to improve their piezoelectric catalytic activities by facet engineering has been seldom reported. Herein, we developed a series of SrTiO3 nanocrystals with exposed {0 0 1} facet, dominant {1 1 0} facet and co-exposed {0 0 1} and {1 1 0} facets, respectively, and firstly revealed its piezoelectric catalytic performance under ultrasonic vibration. Moreover, the relationship between piezoelectric-induced catalytic activity and facet-dependence of SrTiO3 nanocrystal was disclosed for the first time. The SrTiO3 nanocrystal with co-exposed {0 0 1} and {1 1 0} facets exhibited effectively enhanced piezoelectric catalytic activity by degrading Rhodamine B (RhB) under ultrasonic vibration, as compared to that of SrTiO3 nanocrystals with exposed {0 0 1} facet and dominant {1 1 0} facet, respectively. In addition, trapping experiments and active species quantitative experiments confirmed that the co-exposed {0 0 1} and {1 1 0} facets were beneficial to produce O2 and OH with the generation rates of 8.3 and 132.2 μmol g−1 h−1, respectively. The OH radical played a dominant role in piezoelectric catalytic process. Finally, the piezoelectric catalysis mechanism of SrTiO3 surface heterojunction was proposed based on a DFT study. This study presents an in-depth understanding of piezoelectric-induced catalytic of perovskite nanocrystals with exposed well-defined facets.  相似文献   

20.
First-principles-based kinetic Monte Carlo simulation was used to track the elementary surface transformations involved in the catalytic decomposition of NO over Pt(100) and Rh(100) surfaces under lean-burn operating conditions. Density functional theory (DFT) calculations were carried out to establish the structure and energetics for all reactants, intermediates and products over Pt(100) and Rh(100). Lateral interactions which arise from neighbouring adsorbates were calculated by examining changes in the binding energies as a function of coverage and different coadsorbed configurations. These data were fitted to a bond order conservation (BOC) model which is subsequently used to establish the effects of coverage within the simulation. The intrinsic activation barriers for all the elementary reaction steps in the proposed mechanism of NO reduction over Pt(100) were calculated by using DFT. These values are corrected for coverage effects by using the parametrized BOC model internally within the simulation. This enables a site-explicit kinetic Monte Carlo simulation that can follow the kinetics of NO decomposition over Pt(100) and Rh(100) in the presence of excess oxygen. The simulations are used here to model various experimental protocols including temperature programmed desorption as well as batch catalytic kinetics. The simulation results for the temperature programmed desorption and decomposition of NO over Pt(100) and Rh(100) under vacuum condition were found to be in very good agreement with experimental results. NO decomposition is strongly tied to the temporal number of sites that remain vacant. Experimental results show that Pt is active in the catalytic reaction of NO into N2 and NO2 under lean-burn conditions. The simulated reaction orders for NO and O2 were found to be +0.9 and ?0.4 at 723?K, respectively. The simulation also indicates that there is no activity over Rh(100) since the surface becomes poisoned by oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号