首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doping of Nd distorts the lattice structure of CeO2, increases the lattice strain and expands the lattice. Oxygen vacancies and other ceria related defects contribute to the lattice strain. Shifting and broadening of the F2g Raman peak of doped sample, compared to pure CeO2, is indicative of local structure distortion on doping. Dopant induced enhancement of oxygen vacancies, in the CeO2 lattice, is further confirmed by the generation of a new Raman peak at 543 cm?1 that is otherwise absent in the pure one. UV–vis spectroscopy gives an understanding of the different types of ff electronic transition of Nd in the crystalline environment of CeO2. Effective band gap of CeO2 reduces upto Nd concentration of 2.5%. The band gap, however, increases at 4% of Nd due to Burstein–Moss shift. Photoluminescence intensity of pure CeO2 decreases with Nd concentration owing to the increase in the number of non radiative oxygen vacancies. These vacancies act as luminescence quencher and reduce the emission intensity. Photoluminescence excitation spectra confirm the presence of these oxygen vacancies in the CeO2 nanocrystallites.  相似文献   

2.
Comparative GGA and GGA+U calculations for pure and Mo doped anatase TiO2 are performed based on first principle theory, whose results show that GGA+U calculation provide more reliable results as compared to the experimental findings. The direct band gap nature of the anatase TiO2 is confirmed, both by using GGA and GGA+U calculations. Mo doping in anatase TiO2 narrows the band gap of TiO2 by introducing Mo 4d states below the conduction band minimum. Significant reduction of the band gap of anatase TiO2 is found with increasing Mo doping concentration due to the introduction of widely distributed Mo 4d states below the conduction band minimum. The increase in the width of the conduction band with increasing doping concentration shows enhancement in the conductivity which may be helpful in increasing electron–hole pairs separation and consequently decreases the carrier recombination. The Mo doped anatase TiO2 exhibits the n-type characteristic due to the shifting of Fermi level from the top of the valence band to the bottom of the conduction band. Furthermore, a shift in the absorption edge towards visible light region is apparent from the absorption spectrum which will enhance its photocatalytic activity. All the doped models have depicted visible light absorption and the absorption peaks shift towards higher energies in the visible region with increasing doping concentration. Our results describe the way to tailor the band gap of anatase TiO2 by changing Mo doping concentration. The Mo doped anatase TiO2 will be a very useful photocatalyst with enhanced visible light photocatalytic activity.  相似文献   

3.
The band structures, densities of states and absorption spectra of pure ZnO and two heavily Ni doped supercells of Zn0.9722Ni0.0278O and Zn0.9583Ni0.0417O have been investigated using the first-principles plane-wave ultrasoft pseudopotential method based on the density functional theory. The calculated results showed that the band gap is narrowed by Ni doping in ZnO; this, is because the conduction band undergoes a greater shift toward the low-energy region than the valence band and because heavier doping concentrations lead to, narrower band gaps. Moreover, the optical absorption edge exhibits a redshift due to the narrowing of the band gap. Heavier doping concentrations leads to more significant redshifts, which is in agreement with the experimental results.  相似文献   

4.
Good quality single crystals of pure and metal ion (Ni2+) doped bis-thiourea zinc chloride (BTZC) possessing excellent nonlinear optical properties have been grown from aqueous solution by the slow solvent evaporation technique. The lattice parameters of the grown crystals are determined by single crystal X-ray analysis. The well defined sharp peaks in the powder X-ray diffraction pattern reveals the crystalline perfection and the EDAX spectrum confirms the presence of dopant in the lattice of the parent crystal. The DRS UV-visible spectral study reveals improved transparency for the doped crystal, ascertaining the inclusion of metal ion in the lattice. The optical band gap of the pure and doped crystals was calculated to be 4.8 and 5.2 eV respectively from the UV transmission spectrum. The vickers hardness test brings forth higher hardness value for Ni2+doped BTZC as compared to pure BTZC crystal. The dielectric measurement exhibits very low dielectric constant and dielectric loss at higher frequencies for both the pure and Ni2+doped BTZC. The existence of second harmonic generation signals in the crystal also has been confirmed by performing the Kurtz powder test.  相似文献   

5.
First-principles calculations based on density functional theory within the generalized gradient approximation have been performed for the Sn1−xPbxO2 solid solution. The doped formation energies and electronic structures are also analyzed. Results show that the Sn0.9375Pb0.0625O2 solid solution has the highest stability because of its minimum formation energy value of 0.04589 eV at a doping ratio of 0.0625. The SnO2 lattice constants expand in a distorted rutile structure after Pb doping. The band structure and density of states calculations indicate that the band gap of SnO2 narrowed due to the presence of the Pb impurity energy levels in the forbidden band, namely, Pb 6s energy band overlaps with the conductivity band in the F–Q direction. In addition, the number of electrons filled at the bottom of the conduction band increases from 0.13 to 3.96 after doping, resulting in the strengthening of the conductivity of the solid solution after doping of plumbum. The results provide a theoretical basis for the development and application of the Sn1−xPbxO2 solid solution electrode.  相似文献   

6.
Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.  相似文献   

7.
The effects of C cation and S cation doping on the electronic structures and optical properties of SrTiO3 are investigated by density function theory (DFT) calculations. The calculated results reveal that the top of the valence band is predominately made up of the O 2p states for the pure SrTiO3. When SrTiO3 was doped with C cation and S cation, the top of the valence bands consists mainly of O 2p+C 2s hybrid orbitals and O 2p+S 3s hybrid orbitals, respectively. The band gap of SrTiO3 is narrowed by the doping with C cation and S cation, especially for the C and S-codoped SrTiO3. Moreover, the red shifts of the absorption edge are found by the calculated optical properties, which is consistent with reported experiment results. It is the explanation for their visible light respondency by the presence of C 2s and S 3s states on the upper edge of the valence band. All of these results can explain the good photocatalytic properties of C, S cation-codoped SrTiO3 under visible light irradiation.   相似文献   

8.
The pure l-alanine alaninium nitrate (LAAN) single crystals and LAAN crystals doped with lanthanum oxide (La2O3), sodium chloride (NaCl), urea (CH4N2O), glycine (C2H5NO2) and thiourea (CH4N2S) were grown by slow evaporation method. The X-ray diffraction analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX) analysis, UV–vis spectral analysis, dielectric studies and powder SHG measurement are studied systematically. The slight changes in the lattice parameters were observed for the doped crystals compared to pure LAAN crystal. The incorporation of doping into the crystal lattice was confirmed by energy dispersive X-ray analysis. There is no change in the transmission window due to doping and the percentage of transmission in doped samples was found to increase as compared to that of pure LAAN crystal. The dielectric constant of pure crystal was found to be less than that of doped crystals. The AC conductivity was found to increase after doping and with the increase in temperature. A green radiation of 532 nm was observed from the pure and doped LAAN crystals confirming the second harmonic generation (SHG) of the crystals.  相似文献   

9.
杨平  李培  张立强  王晓亮  王欢  宋喜福  谢方伟 《中国物理 B》2012,21(1):16803-016803
The lattice, the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by first-principles calculations. The results show that the lattice constants change linearly with stress. Band gaps are broadened linearly as the uniaxial compressive stress increases. The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction, and the reason for band gap of n-type ZnO changing with stress is also explained. The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy. However, when the energy is higher than 4.0 eV, the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears. There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV. The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO, which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.  相似文献   

10.
The electronic structures and optical properties of N-doped, S-doped and N/S co-doped SrTiO3 have been investigated on the basis of density functional theory (DFT) calculations. Through band structure calculation, the top of the valence band is made up of the O 2p states for the pure SrTiO3. When N and S atoms were introduced into SrTiO3 lattice at O site, the electronic structure analysis shows that the doping of N and S atoms could substantially lower the band gap of SrTiO3 by the presence of an impurity state of N 2p on the upper edge of the valence band and S 2p states hybrid with O 2p states, respectively. When the N/S co-doped, the energy gap has further narrowing compared with only N or S doped SrTiO3. The calculations of optical properties also indicate a high photo response for visible light for N/S co-doped SrTiO3. Besides, we find a new impurity state which separates from the O 2p states could improve the photocatalytic efficiency and we also propose a model for light electron-hole transportation which can explain the experiment results well. All these conclusions are in agreement with the recent experimental results.  相似文献   

11.
Pb2+ ion conducting polymer composite electrolyte films, based on polyvinyl alcohol and polyethylene glycol doped with Pb(NO3)2 salt, were prepared using the solution cast technique. X-ray diffraction patterns of polymer composite with salt reveal the decrease in the degree of crystallinity with increasing concentration of the salt. The dielectric plots show an increase in dielectric permittivity at low frequency side with increasing salt concentration as well as temperature. The frequency dependence of ac conductivity obeys the Jonscher power law, and the maximum dc conductivity value is found to be 2.264×10?7 S/m at 303?K for the polymer composite with 30?mol% Pb(NO3)2. The activation energy for the ion in polymer electrolyte has been calculated from the modulus plots, and is in good agreement with the activation energy calculated from the temperature-dependent dc conductivity plot. The modulus plots indicate the non-Debye nature of the sample. For pure and doped films at room temperature, the impedance plots exhibit only one semicircle, indicating the presence of one type of conduction mechanism, whereas for 30?mol% salt doped with electrolyte film at different temperatures, it demonstrated the existence of bulk and electrode?Celectrolyte interface properties. Optical absorption spectra show a broad peak for all complexes, while compared with pure polymer composite, due to the complex formation of polymer electrolyte with Pb(NO3)2 and their absorption edge, direct band gap and indirect band gap were calculated. It was found that the absorption edge and energy gap values decreased on doping with Pb(NO3)2 dopant.  相似文献   

12.
Through the first principle calculation, electronic properties of monolayer MoS2 doped with single, double, triple and tetra-atoms of P, Cl, O, Se at the surface S site are discussed. Among the substitutional dopant, our calculation results show that when P atoms are doped on a monolayer MoS2, a shift in the Fermi energy into the valence band is observed, making the system p-type. Meanwhile, band gap gradually decreases as increasing the number of P atoms. On the contrary, Cl is identified as a suitable n-type dopant. It is observed that Cl for initial three dopant behaved as magnetic and afterwards returned to non-magnetic behavior. The band gap of the Cl doped system is also dwindling gradually. Finally, O and Se doped systems have little effect on electronic properties near band gap. Such doping method at the S site, and the TDOS and PDOSs of each doping system provide a detailed of understanding toward working mechanism of the doped and the intrinsic semiconductors. This doping model opens up an avenue for further clarification in the doping systems as well as other dopant using this method.  相似文献   

13.
In present work the structural, electronic and optical properties of Pure and Mg-doped SrTiO3 perovskites are calculated via implementing density functional theory calculation. To explore these properties, ultra-soft pseudo-potential (USP) and generalized gradient approximation (GGA) is used. The inclusion of Mg at the Sr site in SrTiO3 not only affects the electronic band structure through generating new gamma points but also band gap increases from 1.788 eV to 1.866 eV. The introduction of Mg is well explained by the partial and total density of states which is affected by incorporating dopant in pure SrTiO3. Optical properties also affected by doping. The absorption edge shifted towards lower value from 0.37 eV to 0.06 eV as Mg-doped in the pure SrTiO3 that represented a red shift. The refractive index increases by doping as of 2.49 to 2.52.The doping of Mg in SrTiO3 affects positively in electronic and optical properties and makes this material a very interesting candidate for optical devices.  相似文献   

14.
杨军  苗仁德  章曦 《物理学报》2015,64(4):47101-047101
基于密度泛函理论的第一性原理平面波超软赝势法, 采用局域自旋密度近似加Hubbard U值方法研究了纯锐钛矿型TiO2, N, Cu单掺杂TiO2及N/Cu共掺杂TiO2 的晶体结构、电子结构和光学性质. 研究结果表明, 掺杂后晶格发生相应畸变, 晶格常数变大. N 和Cu的掺杂在TiO2禁带中引入杂质能级, 禁带宽度发生相应改变. 对于N掺杂TiO2禁带宽度减小较弱, 而Cu掺杂和N/Cu共掺TiO2禁带宽度显著降低, 导致吸收光谱明显红移, 光学催化性增强, 有利于实际应用.  相似文献   

15.
高攀  吴晶  柳清菊  周文芳 《中国物理 B》2010,19(8):87103-087103
The crystal structures, electronic structures and optical properties of nitrogen or/and praseodymium doped anatase TiO2 were calculated by first principles with the plane-wave ultrasoft pseudopotential method based on density functional theory. Highly efficient visible-light-induced nitrogen or/and praseodymium doped anatase TiO2 nanocrystal photocatalyst were synthesized by a microwave chemical method. The calculated results show that the photocatalytic activity of TiO2 can be enhanced by N doping or Pr doping, and can be further enhanced by N+Pr codoping. The band gap change of the codoping TiO2 is more obvious than that of the single ion doping, which results in the red shift of the optical absorption edges. The results are of great significance for the understanding and further development of visible-light response high activity modified TiO2 photocatalyst. The photocatalytic activity of the samples for methyl blue degradation was investigated under the irradiation of fluorescent light. The experimental results show that the codoping TiO2 photocatalytic activity is obviously higher than that of the single ion doping. The experimental results accord with the calculated results.  相似文献   

16.
张云  邵晓红  王治强 《物理学报》2010,59(8):5652-5660
采用基于第一性原理的密度泛函理论平面波超软赝势法,研究了SiC材料p型掺杂的晶体结构和电子结构性质,得到了优化后体系的结构参数,掺杂形成能,能带结构和电子态密度,计算得到掺杂B,Al,Ga在不同浓度下的禁带宽度.结果表明:随着掺杂B原子浓度的增大,禁带宽度随之减小;而随着掺杂Al,Ga原子浓度的增大,禁带宽度随之增大;在相同浓度下,掺杂Ga的禁带宽度大于掺杂Al,掺Al禁带宽度大于掺B. 关键词: SiC 电子结构 掺杂 第一性原理软件  相似文献   

17.
采用基于密度泛函理论的第一性原理方法, 计算了不同Mn掺杂浓度LiFe1-xMnxPO4 (x=0,0.25,0.50,0.75) 的电子结构. 同时采用流变相辅助高温固相碳热还原法制备了LiFe1-xMnxPO4 (x= 0,0.25,0.50,0.75) 材料. 理论计算表明: LiFePO4具有Eg = 0.725 eV的带隙宽度, 为半导体材料. 通过Fe位掺杂25%的Mn离子可最大程度地 减小材料带隙宽度、降低Fe---O键及Li---O键键能, 进而提高材料的电子电导率及锂离子扩散速率. 实验结果亦表明, 当Mn掺杂量x=0.25时, 材料具有最优的电化学性能, 其具有约为158 mAh· g-1的放电比容量以及551 Wh· kg-1的能量密度. 理论计算与实验结果非常符合.  相似文献   

18.
Magnesium doping in hierarchical zinc oxide nanostructures has been carried out using an aqueous method. The XRD results confirmed the hexagonal wurtzite structure for the magnesium doped zinc oxide nanoparticles. On doping with Mg2+, there is a change in morphology of the hierarchical nanostructures to nanorods. The optical absorption and photoluminescence properties of the nanostructures depend on the magnesium doping level. A blue shift of the band gap absorption and the near band edge emission is observed on Mg doping.  相似文献   

19.
Single crystals of pure, Ca2+ and Sr2+ doped NH4Sb3F10 are grown by slow evaporation technique. The effect of dopants on the growth and physicochemical properties also have been investigated and reported for the first time. The grown crystals are characterized with the aid of single crystal X-ray diffractometry to confirm the crystal structure. EDAX studies are done to confirm the presence of dopants in the crystal lattice. The vibrational frequencies of various group ligands in the crystals have been derived from the Fourier transform infrared (FT-IR) spectrum. From the optical absorption spectrum the band gap energy was calculated and it was found to be 5.76, 6.29 and 6.35 eV for pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals respectively. Thermal stability of the sample has been analysed using TG-DTA analysis. The activation energy of pure, Ca2+ and Sr2+ doped NH4Sb3F10 crystals were calculated from the dc conductivity measurements and it is found to be 0.2728, 0.2816 and 0.3622 eV Experimental results shows improved physicochemical properties when the dopant is added to the pure material.  相似文献   

20.
利用全势线性缀加平面波法,对Mg2Si的几何结构和电子结构进行了计算,得到了稳定的晶格参数以及能带和电子态密度.能带结构表明,Mg2Si为间接带隙半导体,禁带宽度为020 eV.在此基础上利用玻尔兹曼输运理论和刚性带近似计算了材料的电导率、Seebeck系数和功率因子.结果表明,在温度为700 K时p型和n型掺杂的Mg2Si功率因子达到最大时的最佳载流子浓度分别为7749×1019 cm-3关键词: 2Si')" href="#">Mg2Si 全势线性缀加平面波法 热电输运性质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号