首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain tight binding lattices host macroscopically degenerate flat spectral bands. Their origin is rooted in local symmetries of the lattice, with destructive interference leading to the existence of compact localized eigenstates. We study the robustness of this localization to disorder in different classes of flat band lattices in one and two dimensions. Depending on the flat band class, the flat band states can either be robust, preserving their strong localization for weak disorder W, or they are destroyed and acquire large localization lengths ξ that diverge with a variety of unconventional exponents ν, ξ ~ 1 /W ν .  相似文献   

2.
The dynamic scaling behaviors of the restricted-solid-on-solid (RSOS) model on two new types of substrate, which are honeycomb and square-octagon lattice substrates, are studied by means of Kinetic Monte Carlo simulations. The growth exponent β and the roughness exponent α defined, respectively, by the surface width via W ~ t β and the saturated width via W sat ~ L α , L being the system size, were obtained by a power-counting analysis. Our simulation results show that the Family-Vicsek scaling is still satisfied. However, the structures of the substrates indeed affect the dynamic behavior of the growth model. The values of the roughness exponents fall between regular and fractal lattices. Deeper analysis show that the coordination number of the substrates play an crucial role.  相似文献   

3.
The structure of an isolated vortex line, and the lower critical fieldH c 1, is calculated by means of the generalized Ginzburg-Landau (GL) theory for arbitrary values of the GL-parameterk(≧1/√2) and the mean free pathl at temperaturesT in the vicinity ofT c . The free energy functional including the corrections of order [1?(T/T c )] to the GL-functional is derived exactly. The corresponding Euler-Lagrange equations determining the zero-order (GL) contributions and the corrections of order [1?(T/T c )] to the order parameter,f(r), and the superfluid velocity,v(r), have been solved numerically. The shapes of the first-order corrections off(r), v(r), and the magnetic field,h(r) are found to depend markedly, for a given value ofκ, on a second parameter,α=0.882(ξ 0 /l) (whereξ 0 is theBCS-coherence-distance). The deviations from the GL-solutions become largest forh(r) at parameter valuesk≈ 1 andα ≈ 0(the deviation ofh(0) is about 6% atT=0.9T c forκ=1 andα=0). The ratioH c1/H c (where the thermodynamic criticalH c has the BCS-temperature-dependence) is found to increase slightly in the “clean” limit (α=0), and to decrease slightly in the “dirty” limit (α=∞) asT decreases (the variation ofH c 1/H c is always less than 3% for arbitrary values ofκ andα asT decreases fromT c to 0.9T c ).  相似文献   

4.
The localization properties of eigenfunctions for two interacting particles in theone-dimensional Anderson model are studied for system sizes up to N = 5000 sitescorresponding to a Hilbert space of dimension ≈107 using the Green function Arnoldi method. Theeigenfunction structure is illustrated in position, momentum and energy representation,the latter corresponding to an expansion in non-interacting product eigenfunctions.Different types of localization lengths are computed for parameter ranges in system size,disorder and interaction strengths inaccessible until now. We confirm that one-parameterscaling theory can be successfully applied provided that the condition of N being significantlylarger than the one-particle localization length L1 is verified.The enhancement effect of the two-particle localization length L2 behaving asL2 ~ L21 is clearly confirmed for a certain quite large intervalof optimal interactions strengths. Further new results for the interaction dependence in avery large interval, an energy value outside the band center, and different interactionranges are obtained.  相似文献   

5.
The parabolic Anderson model is defined as the partial differential equation ? u(x, t)/? t = κ Δ u(x, t) + ξ(x, t)u(x, t), x ∈ ? d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u(x, 0) = u 0(x), x ∈ ? d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2d κ, split into two at rate ξ ∨ 0, and die at rate (?ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents
$$ \lambda _{p}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t} \log \mathbb {E} ([u(0,t)]^{p})^{1/p}, \quad p \in \mathbb{N} , \qquad \lambda _{0}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t}\log u(0,t). $$
For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ??, where ?? = {??(x, y) : x, y ∈ ? d , xy} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (??), p?, are given by the formula
$$ \lambda _{p}(\mathcal{K} ) = \text{sup} \{\lambda _{p}(\kappa ) : \, \kappa \in \text{Supp} (\mathcal{K} )\}, $$
where, for a fixed realisation of ??, Supp(??) is the set of values taken by the ??-field. We also show that for the associated quenched Lyapunov exponent λ 0(??) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(??) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all ?? satisfying a certain clustering property, namely, there are arbitrarily large balls where ?? is almost constant and close to any value in Supp(??). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of ?? where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of ?? where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.
  相似文献   

6.
The special features of the dielectric properties and conduction of ferroelectric crystals of Pb5(Ge1?xSix)3O11 (0 ≤ x ≤ 0.67) solid solutions were studied. Permittivity anomalies close to the temperatures T1 ≈ 260 K and T2 ≈ 130 K, the appearance of relaxator behavior at x > 0.35, and critical behavior of the concentration dependences of dielectric and pyroelectric characteristics at x1 = 0.35 and x2 = 0.60 were observed and studied. These phenomena were found to be related to the dynamics of charge localization on defects with activation energies of Ua1 ≈ 0.6 eV and Ua2 ≈ 0.23 eV. Relaxator behavior appears when the Curie point lies in the temperature region of thermal charge localization. The concentration dependence features at x1 and x2 are explained by the coincidence of the Curie point and the centers of the temperature regions of charge localization on the Ua1 and Ua2 defect levels, respectively.  相似文献   

7.
Nonlinear magnetotransport in a two-dimensional electron gas in one-dimensional lateral lattices fabricated from a selectively doped GaAs/AlAs heterostructure is investigated. One-dimensional potential modulation is imposed on the two-dimensional electron gas by means of a set of metal strips formed on the planar surface of Hall bars. The dependences of the differential resistance rxx on the magnetic field B < 0.5 T are studied at a temperature T = 1.6 K in lattices with a period of a ≈ 200nm. It is shown that periodic oscillations in rxx(1/B) occur in such lattices under the action of a current-induced Hall field due to Zener tunneling between Landau levels. Interference is found between Zener oscillations and commensurability oscillations of rxx in two-dimensional electron systems with one-dimensional periodic modulation. The experimental results are qualitatively explained by the role of Landau bands in nonlinear transport at large filling factors.  相似文献   

8.
The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T ? T c . The fractal dimension of iso-potential lines (D f ), the exponent of the distribution function of the gyration radius (τ r ), and the loop lengths (τ l ), and also the exponent of the loop Green function x l change in terms of T ? T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f (T) ? D f (T c ) ~ 1/√ξ(T), in which ξ(T) is the spin correlation length in the Ising model.  相似文献   

9.
The famous three-body problem can be traced back to Isaac Newton in the 1680 s. In the 300 years since this "three-body problem"was first recognized, only three families of periodic solutions had been found, until 2013 when ˇSuvakov and Dmitraˇsinovi′c [Phys.Rev. Lett. 110, 114301(2013)] made a breakthrough to numerically find 13 new distinct periodic orbits, which belong to 11 new families of Newtonian planar three-body problem with equal mass and zero angular momentum. In this paper, we numerically obtain 695 families of Newtonian periodic planar collisionless orbits of three-body system with equal mass and zero angular momentum in case of initial conditions with isosceles collinear configuration, including the well-known figure-eight family found by Moore in 1993, the 11 families found by ˇSuvakov and Dmitraˇsinovi′c in 2013, and more than 600 new families that have never been reported, to the best of our knowledge. With the definition of the average period T = T=Lf, where Lf is the length of the so-called "free group element", these 695 families suggest that there should exist the quasi Kepler's third law T* ≈ 2:433 ± 0:075 for the considered case, where T*= T|E|~(3/2) is the scale-invariant average period and E is its total kinetic and potential energy,respectively. The movies of these 695 periodic orbits in the real space and the corresponding close curves on the "shape sphere"can be found via the website: http://numericaltank.sjtu.edu.cn/three-body/three-body.htm.  相似文献   

10.
We describe the electronic conductivity, as a function of the Fermi energy, in the Bernal bilayer graphene (BLG) in presence of a random distribution of vacancies that simulate resonant adsorbates. We compare it to monolayer (MLG) with the same defect concentrations. These transport properties are related to the values of fundamental length scales such as the elastic mean free path L e , the localization length ξ and the inelastic mean free path L i . Usually the later, which reflect the effect of inelastic scattering by phonons, strongly depends on temperature T. In BLG an additional characteristic distance l 1 exists which is the typical traveling distance between two interlayer hopping events. We find that when the concentration of defects is smaller than 1%–2%, one has l 1L e ? ξ and the BLG has transport properties that differ from those of the MLG independently of L i (T). Whereas for larger concentration of defects L e <l 1 ? ξ, and depending on L i (T), the transport in the BLG can be equivalent (or not) to that of two decoupled MLG. We compare two tight-binding model Hamiltonians with and without hopping beyond the nearest neighbors.  相似文献   

11.
The ABN ?1 chain is a system that consists of repeating a unit cell withN siteswhere between the A and B sites there is an energy difference ofλ. Weconsidered bosons in these special lattices and took into account the kinetic energy, thelocal two-body interaction, and the inhomogenous local energy in the Hamiltonian. We foundthe charge density wave (CDW) and superfluid and Mott insulator phases, and constructedthe phase diagram for N =2 and 3 atthe thermodynamic limit. The system exhibited insulator phases for densitiesρ =α/N, with α being an integer. Weobtained that superfluid regions separate the insulator phases for densities larger thanone. For any N value, we found that for integer densitiesρ, thesystem exhibits ρ +1 insulator phases, a Mott insulator phase, and ρ CDW phases. Fornon-integer densities larger than one, several CDW phases appear.  相似文献   

12.
The cross sections for elastic and inelastic η-meson scattering on 7Li nuclei are obtained on the basis of the αt-cluster representation of the target nucleus. The experimentally known values of the parameters of elastic ηα and αt scattering are used in exactly solving three-body Faddeev equations with separable two-body potentials. The η7Li elastic-scattering scattering length found from respective calculations is aη7Li = ?0.310 ? i0.198 fm.  相似文献   

13.
The maximum value of the light extinction coefficient μ, which can be observed in a dispersive medium with a relative refractive index n of the scattering particles, is studied within the framework of a quasi-crystalline approximation for nonabsorbing dispersive media consisting of monodisperse spherical scatterers. A change in the diffraction parameter x of the scattering particles and their volume concentration c v is accompanied by nonmonotonic variations of the extinction coefficient, and the function μ(x, c v ) exhibits several maxima. The dimensions and concentrations of particles are determined, for which the extinction coefficient reaches the absolute maximum μmax. The μmax value exhibits a monotonic growth with increasing relative refractive index n of the scattering particles. The conditions of validity of the Ioffe-Regel criterion of radiation localization have been studied. It is established that the localization in nonabsorbing dispersive media can be observed only for n ? 2.7. The intervals of x and c v in which the criterion of radiation localization is satisfied in dispersive media consisting of particles with n = 3.0 and 3.5 are determined.  相似文献   

14.
A symmetry analysis of the possible magnetic structures of Er5Ge3 in the ground state is performed using the results of measurements of elastic magnetic neutron scattering at 4.2 K. It is shown that the minimum discrepancy factor R m ≈9.5% corresponds to a modulated collinear magnetic structure in which the magnetic moments of erbium atoms are oriented along the a 3 axis of the unit cell of the crystal structure and induce an antiferromagnetic longitudinal spin wave (AFLSW). The magnetic structure is characterized by the wave vector k=2π(0, 0, μ /a 3) (where μ≈0.293) and the modulation period λ≈3.413a 3. The magnetic ordering temperature T N ≈38 K is determined from the temperature dependence of the intensity of magnetic reflections. __________ Translated from Fizika Tverdogo Tela, Vol. 45, No. 9, 2003, pp. 1653–1659. Original Russian Text Copyright ? 2003 by Vokhmyanin, Dorofeev.  相似文献   

15.
The quantum-statistical properties of states of an electromagnetic field of general superpositions of coherent states of the form of N α,β(α?+e iξ β? are investigated. Formulas for the fluctuations (variances) of Hermitian trigonometric phase field operators ? ≡ côs φ, ? ≡ sîn φ (the so-called “Susskind–Glogower operators”) are found. Expressions for the rigorous uncertainty relations (Cauchy inequalities) for operators of the number of photons and trigonometric phase operators, as well as for operators ? and ?, are found and analyzed. The states of amplitude \({N_{\alpha ,\beta }}\left( {\left| {{{\sqrt {ne} }^{i\varphi }}\rangle + {e^{i\xi }}\left| {{{\sqrt {{n_\beta }e} }^{i\varphi }}\rangle } \right.} \right.} \right)\), φ = φα = φβ, and phase \({N_{\alpha ,\beta }}\left( {\left| {{{\sqrt {ne} }^{i{\varphi _\alpha }}}\rangle + {e^{i\xi }}\left| {{{\sqrt {ne} }^{i{\varphi _\beta }}}\rangle } \right.} \right.} \right)\), n = n α = n β, superpositions of coherent states are considered separately. The types of quantum superpositions of meso- and macroscales (n α, n β » 1) are found for which the sines and/or cosines of the phase of the field can be measured accurately, since, under certain conditions, the quantum fluctuations of these quantities are close to zero. A simultaneous accurate measurement of cosφ and sinφ is possible for amplitude superpositions, while an accurate measurement of one of these trigonometric phase functions is possible in the case of certain phase superpositions. Amplitude superpositions of coherent states with a vacuum state are quantum states of the field with a “maximum” level of the quantum uncertainty both in the case of a mesoscopic scale and in the case of a macroscopic scale of the field with an average number of photons n α/β ≈ 0, n β/α » 1.  相似文献   

16.
In this paper, we calculate the localization length of a TM electromagnetic wave in unitof system length versus incident angle in a disordered layered structure where therefractive index of one of its constituents follows a Lévy-type distribution with a powerexponent α.The incident angle at which the localization length takes the maximum value is called thegeneralized Brewster angle as before. However, in contrast to previous works with a weakdisorder, the wave incident at generalized Brewster angle is not always in the extendedregime. For special values of α and the frequency, the system is in a localizedstate at this angle. But, the localization length at this Brewster angle is always largerthan that at other angles. The effects of α variation on the localization length at thisBrewster angle and its position are investigated for different frequencies. Thelocalization at this angle degrades with increasing α for all frequencies. Atsome working frequencies, the generalized Brewster angle is a decreasing function ofα. However,at other frequencies, the dependence of generalized Brewster angle on α is not monotonic. Forincident angles smaller than a specific angle, the localization length increases withincreasing α.However, for incident angles larger than this specific angle, there are incident angles atwhich any increase of α leads to the decrease of localization length. Inother words, for these incident angles, the improvement of Anderson localizationsurprisingly happens with decrease of disorder strength and the refractive index contrast.  相似文献   

17.
Al2O3 films 150 Å thick are deposited on silicon by the ALD technique, and their x-ray (XPS) and ultraviolet (UPS) photoelectron spectra of the valence band are investigated. The electronic band structure of corundum (α-Al2O3) is calculated by the ab initio density functional method and compared with experimental results. The α-Al2O3 valence band consists of two subbands separated with an ionic gap. The lower band is mainly formed by oxygen 2s states. The upper band is formed by oxygen 2p states with a contribution of aluminum 3s and 3p states. A strong anisotropy of the effective mass is observed for holes: m h * ≈ 6.3m 0 and m h * ≈ 0.36m 0. The effective electron mass is independent of the direction m e * m e * ≈ 0.4m 0.  相似文献   

18.
We propose the finite-size scaling of correlation functions in finite systems near their critical points.At a distance r in a ddimensional finite system of size L,the correlation function can be written as the product of|r|~(-(d-2+η))and a finite-size scaling function of the variables r/L and tL~(1/ν),where t=(T-T_c)/T_c,ηis the critical exponent of correlation function,andνis the critical exponent of correlation length.The correlation function only has a sigificant directional dependence when|r|is compariable to L.We then confirm this finite-size scaling by calculating the correlation functions of the two-dimensional Ising model and the bond percolation in two-dimensional lattices using Monte Carlo simulations.We can use the finite-size scaling of the correlation function to determine the critical point and the critical exponentη.  相似文献   

19.
We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,…,N is occupied by a particle of type α=A,B,C, with the average density of each particle species N α /N=r α fixed. These particles interact via a mean field nonreflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N→∞, i/Nx∈[0,1] has a unique density profile ρ α (x) except for some special values of the r α for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature \(T_{c}=3\sqrt{r_{A} r_{B} r_{C}}/2\pi\).  相似文献   

20.
We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than d + 1, with d the space dimension, this happens for all values of J smaller than a critical value Jc(p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for p > 2d and J in a left neighborhood of Jc(p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes (d = 2) or slabs (d = 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号