首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Taking into account quantum gravity effects, we investigate the tunnelling radiation of charged fermions in the Kerr-Newman black hole. The result shows that the corrected Hawking temperature is determined not only by the parameters of the black hole, but also by the energy, angular momentum and mass of the emitted fermion. Meanwhile, an interesting found is that the temperature is affected by the angle ??. The quantum gravity correction slows down the evaporation.  相似文献   

2.
Quantum gravity has exciting peculiarities on the Planck scale.The effect of generalized uncertainty principle (GUP) to the entangled scalar/fermion particles’ tunneling from a Schwarzschild black hole immersed in an electromagnetic Universe is investigated by the help of semi-classical tunneling method. The quantum corrected Hawking temperature of this black hole with an external parameter “a” modifies the Hawking temperature for the entangled particles.  相似文献   

3.
Recently, fermions tunneling beyond semiclassical approximation from an uncharged static black hole was investigated by Majhi, which was based on the work of Banerjee and Majhi, it was found that the black hole entropy correction can be produced as the quantum effect of a particle is taken into account. In this paper, we further extend this idea to the stationary Kerr black hole to discuss its entropy correction. To get the corrections correctly, the proportionality parameters of quantum corrections of action I i to the semiclassical action I 0 in this case are regarded as the inverse of the product of Planck Length and Planck Mass. The result shows that entropy corrections to the stationary black hole also include the logarithmic term and inverse area term in Bekenstein–Hawking entropy beyond semiclassical approximation.  相似文献   

4.
A promising strategy for better understanding space and time at the Planck scale, is outlined and further pursued. It is explained in detail, how black hole unitarity demands the existence of transformations that can remove firewalls. This must then be combined with a continuity condition on the horizon, with antipodal identification as an inevitable consequence. The antipodal identification comes with a \(\textit{CPT}\) inversion. We claim to have arrived at ‘new physics’, but rather than string theory, our ‘new physics’ concerns new constraints on the topology and the boundary conditions of general coordinate transformations. The resulting theory is conceptually quite non trivial, and more analysis is needed. A strong entanglement between Hawking particles at opposite sides of the black hole is suspected, but questions remain. A few misconceptions concerning black holes, originating from older investigations, are discussed.  相似文献   

5.
In this study, the quantum gravity effect on the tunnelling radiation of charged massive spin-0 scalar particle from \(2+1\) dimensional charged rotating Banados–Teitelboim–Zanelli (BTZ) black hole is looked into by using the Hamilton–Jacobi approach. For this, we calculate the modified Hawking temperature of the black hole by using the modified Klein–Gordon equation based on the generalized uncertainty principle, and we noticed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the angular momentum, energy, charge and mass of the tunnelling scalar particle. Using the modified Hawking temperature, we discussed the stability of the black hole in the context of the modified heat capacity, and observed that it might undergo both first and 1 phase transitions in the presence of the quantum gravity effect, but just a first-type transition in the absence of the quantum gravity effect. Furthermore, we investigated the modified Hawking temperature of the black hole by using the tunnelling processes of the charged massive Dirac and vector boson particles. We observed that scalar, Dirac and vector particles are tunnelled from the black hole completely differently from each other in the presence of the quantum gravity effect.  相似文献   

6.
In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution.  相似文献   

7.
Recent research shows that fermions tunnelling can result in correct Hawking temperature of a black hole. In this letter, choosing a set of appropriate matrices γμγμ, we attempt to study Hawking radiation of Dirac particles across the horizons of the GHS and non-extremal five-dimensional D1–D5 black holes in string theory by using fermions tunnelling method. Finally, the expected Hawking temperatures of the GHS and non-extremal D1–D5 black holes are correctly recovered.  相似文献   

8.
9.
A white hole (WH) is a time-reversed black hole (BH) solution in general relativity with a spacetime region to which cannot be entered from the outside. Recently they have been proposed as a possible solution to the information loss problem (Haggard et al. in Phys Rev D 92:104020, 2015). In particular it has been argued that the quantization of the gravitational field may prevent a BH from collapsing entirely with an exponential decay law associated to the black-hole-to-white-hole (BHWH) tunneling scenario (Barcelo et al. in Class Quantum Gravit 34:105007, 2017). During this period of BHWH transition the Hawking radiation should take place. Taking this possibility into account, we utilize the Hamilton–Jacobi and Parkih–Wilczek methods to study the Hawking radiation viewed as a quantum tunneling effect to calculate the tunneling rate of vector particles tunneling inside (outside) the horizon of a WH (BH), respectively. We show that there is a Hawking radiation associated to a WH spacetime equal to the BH Hawking temperature when viewed from the outside region of the WH geometry. In the framework of Parkih–Wilczek method, surprisingly, we show that Hawking temperature is affected by the initial radial distance at which the gravitational collapse starts.  相似文献   

10.
In this paper, we use semi-classical tunneling approach to calculate the quantum corrections to the Hawking temperature as well as entropy of the Kehagias-Sftesos asymptotically flat black hole solution and charged regular black hole with Fermi-Dirac distribution. For this purpose, we apply the first law of black hole thermodynamics to investigate the semi-classical entropy of both black holes having mass as well as charge or coupling constant. For both black holes, the entropy corrections contain the logarithmic term as a leading order correction term. For Kehagias-Sftesos asymptotically flat black hole, the semi-classical Hawking temperature and black hole entropy will behave asymptotically by considering the vanishing coupling constant b = 0. We have obtained the same analysis for the corrected thermodynamical quantities for this BH. For charged regular black hole with Fermi-Dirac distribution, if we neglect the charged effects in our analysis, i.e., q = 0, then these corrections approximately leads to the Schwarzschild black hole which is already given in the literature.  相似文献   

11.
In this paper, we use the generalized uncertainty principle (GUP) and quantum tunneling method to research the formation of the remnant from a Schwarzschild black hole with global monopole. Based on the corrected Hamilton–Jacobi equation, the corrections to the Hawking temperature, heat capacity and entropy are calculated. We not only find the remnant close to Planck scale by employing GUP, but also research the thermodynamic stability of the black hole remnant according to the phase transition and heat capacity.  相似文献   

12.
We find the existence of a quantum thermal effect, “Hawking absorption.” near the inner horizon of the Kerr–Newman black hole. Redefining the entropy, temperature, angular velocity, and electric potential of the black hole, we give a new formulation of the Bekenstein–Smarr formula. The redefined entropy vanishes for absolute zero temperature of the black hole and hence it is interpreted as the Planck absolute entropy of the KN black hole.  相似文献   

13.
A standard Virasoro subalgebra for a static dilaton black hole obtained in the low-energy effective field theory describing heterotic string is constructed at a Killing horizon. The statistical entropies of the Garfinkle–Horowitz–Strominger dilaton black hole and the Gibbons–Maeda dilaton black hole obtained by standard Cardy formula agree with their Bekenstein–Hawking entropies only if we take period T of function as the periodicity of the Euclidean black hole. We also consider first-order quantum correction to the entropy and find that the correction is described by a logarithmic term with a factor of , which is different from Kaul and Majumdar's factor of .  相似文献   

14.
Ng YJ 《Physical review letters》2001,86(14):2946-2949
We show that quantum mechanics and general relativity limit the speed nu of a simple computer (such as a black hole) and its memory space I to I(nu2) less, similar(t(-2))P, where t(P) is the Planck time. We also show that the lifetime of a simple clock and its precision are similarly limited. These bounds and the holographic bound originate from the same physics that governs the quantum fluctuations of space-time. We further show that these physical bounds are realized for black holes, yielding the correct Hawking black hole lifetime, and that space-time undergoes much larger quantum fluctuations than conventional wisdom claims-almost within range of detection with modern gravitational-wave interferometers.  相似文献   

15.
We study the occurrence of critical phenomena in four-dimensional, rotating and charged black holes, derive the critical exponents and show that they fulfill the scaling laws. Correlation function critical exponents and Renormalization Group considerations assign an effective (spatial) dimension,d=2, to the system. The two-dimensional Gaussian approximation to critical systems is shown to reproduce all the black hole's critical exponents. Higher order corrections (which are always relevant) are discussed. Identifying the two-dimensional surface with the event horizon and noting that generalization of scaling leads to conformal invariance and then to string theory, we arrive at 't Hooft's string interpretation of black holes. From this, a model for dealing with a coarse grained black hole quantization is proposed. We also give simple arguments that lead to a rough quantization of the black hole mass in units of the Planck mass, i.e.M(1/2)M Pll with anl positive integer and then, from this result, to the proportionality between quantum entropy and area.This essay received the fifth award from the Gravity Research Foundation, 1994—Ed.  相似文献   

16.
A model black hole, holding a ‘quantum core’ characterized by the Planck order matter density, is revisited here. Based on the quantum improved Newton’s potential drawn out of the loop quantum cosmology we propose a Schwarzschild class, quantum improved black hole line-element that upholds the existence of Planck-dense quantum matter core. Causality is kept preserved in this proposal. Quite in a natural way the quantum core emerges closely homogeneous in its interior matter distribution. The radius of the quantum core turns out to be necessarily proportional to one-third power of the black hole mass. Hawking process of black hole evaporation leads to a shrinking quantum core, and as the mass of black hole approaches near about the Planck mass, the rate of evaporation diminishes rapidly and eventually leaves a cold remnant having a Planck order mass. Proposed model supports the standard quantum geometrical logarithmic correction to black hole entropy-area law.  相似文献   

17.
Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man’s fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from the non-extremal black hole in D = 5, SO(6) gauged supergravity by constructing a set of appropriate matrices γ μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods.  相似文献   

18.
In the context of gravity’s rainbow, Planck scale correction on Hawking radiation and black hole entropy in Parikh and Wilczk’s tunneling framework is studied. We calculate the tunneling probability of massless particles in the modified Schwarzschild black holes from gravity’s rainbow. In the tunneling process, when a particle gets across the horizon, the metric fluctuation must be taken into account, not only due to energy conservation but also to spacetime Planck scale effect. Our results show that the emission rate is related to changes of the black hole’s quantum corrected entropies before and after the emission. In the same time, for the modified black holes, a series of correction terms including a logarithmic term to Bekenstein–Hawking entropy are obtained. Correspondingly, the spectrum of Planck scale corrected emission is obtained and it deviates from the thermal spectrum. In addition, a specific form of modified dispersion relation is proposed and applied.  相似文献   

19.

The purpose of this paper is to discuss the Hawking radiation of vector particles from a quantum correction black hole by the mean of quantum tunneling. In order to achieve this purpose, based on the Proca field equation and WKB approximation, the quantum tunneling method is used to calculate the tunneling rate and Hawking temperature of the black hole. According to the analysis of the consequences, we find that the tunneling rate and Hawking temperature are related to the quantum parameter besides the horizon radius and mass of the black hole. Furthermore, when the results are compared with those of scalar particles and fermions of the black hole, no difference is found. Therefore, the tunneling rate and Hawing temperature of the black hole do not change with the type of radiation particles.

  相似文献   

20.
Recently Ho?ava proposed a renormalizable quantum gravity, without the ghost problem, by abandoning Einstein?s equal-footing treatment of space and time through the anisotropic scaling dimensions. Since then various interesting aspects, including the exact black hole solutions have been studied but no rotating   black hole solutions have been found yet, except some limiting cases. In order to fill the gap, I consider a simpler three-dimensional set-up with z=2z=2 and obtain the exact rotating black hole solution. This solution has a ring curvature singularity inside the outer horizon, like the four-dimensional Kerr black hole in Einstein gravity, as well as a curvature singularity at the origin. The usual mass bound works also here but in a modified form. Moreover, it is shown that the conventional first law of thermodynamics with the usual Hawking temperature and chemical potential does not work, which seems to be the genuine effect of Lorentz-violating gravity due to lack of the absolute horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号