首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
本文将1-乙基-3-甲基咪唑醋酸盐离子液体修饰在多壁碳纳米管上,制备出离子液体/碳纳米管复合材料,并研究了对甲氧基甲苯(p-MT)在该复合离子液体水溶液体系中的电氧化性能. 同时,通过循环伏安法和计时电流法考查了扫描速率、温度、反应底物浓度等因素对电氧化性能的影响,研究了p-MT在该体系中的动力学过程. 实验结果表明,p-MT在复合离子液体水溶液体系中发生不可逆的电氧化反应,且该过程受扩散控制,扩散系数为7.69×10-10 cm2·s-1. 适当地升高温度和增大反应底物浓度都有利于促进p-MT中C-H键选择性电氧化为相应醛基,选择性可达到95%. 通过在不同结构电解槽中进行恒电位电解研究,发现离子液体/MWCNTs复合电解质在一室型电解槽中进行p-MT电氧化的电解效率更高、对目标产物对甲氧基苯甲醛(p-MBA)的选择性也更好.  相似文献   

2.
通过电氧化二级芳胺合成了一系列四取代肼化合物.该电合成反应采用简单的装置如单室电解槽和恒电流电解,且无需过渡金属催化剂和氧化试剂,并可放大至克级规模.  相似文献   

3.
叶小鹤  王欢  薛腾  张丽  陆嘉星 《有机化学》2007,27(5):643-647
醋酸铅可以在Pt电极上被氧化生成四醋酸铅, 循环伏安法和计时电流法研究表明其初始动力学过程存在三维连续成核机理. 在该醋酸电解液中加入一定量的苯, 控制一定的电流密度、温度等条件可以阻化铅在对电极上的析出, 实现了无隔膜电解槽中四醋酸铅的电解生成, 并应用于间接有机电合成. 本工作分别将其应用于苯乙酮和苯乙烯的间接有机电氧化反应, 得到苯乙酮的乙酰氧基化产率为68.2%以及苯乙烯的氧化产率为35.6%.  相似文献   

4.
重铬酸钾电化学合成反应表观动力学   总被引:2,自引:0,他引:2  
针对重铬酸钾传统生产技术存在的高污染、高消耗等问题,研究了用电化学合成绿色技术.由在自制电解槽中以铬酸钾为原料电化学合成重铬酸钾的反应动力学实验,测得不同反应条件下的动力学数据.结果表明,电化学合成反应过程表现为拟零级反应动力学特征.建立了电化学合成反应表观动力学方程和阳极电解液体积随转化率的变化方程,求得了动力学参数...  相似文献   

5.
电化学水裂解制备氢气因其固有的优势受到了广泛关注.然而,阳极氧气析出反应动力学缓慢、能耗高,极大地限制了其应用.与氧析出反应不同,一些无机化学品的电氧化无论是热力学还是动力学上都更易发生.因此,耦合氢气析出反应和无机化学品氧化在提高电化学制氢效率方面表现出巨大潜力.与氧气析出反应相比,无机化学品氧化可以显著降低过电位.同时,还可以在阳极去除污染物或制备高附加值化学品.本综合评述总结了电化学制备氢气耦合无机化学品电氧化方面的研究进展.首先,介绍并讨论一些具有代表性的无机化学替代品,如含氮的肼、一氧化氮以及含硫的硫化氢、二氧化硫等,其可以实现在很低的电压下制备氢气并且从根本上避免氧气的产生.另外,引入电化学中和能能够进一步降低电化学制备氢气电解槽的槽压,甚至可以实现在制备氢气的同时输出电力.最后,对该领域面临的挑战以及未来发展进行了展望.  相似文献   

6.
本文用Ti/SnO2-Sb2O5/PbO2和Ti/Ru-Ti-Sn氧化物涂层阳极研究了氯离子对苯酚电化学氧化降解过程的影响. 结果表明,在电解液中加入氯离子能提高苯酚的去除效率并完全降解. 在无氯离子存在下,有机物电化学降解主要以直接电氧化方式进行;在氯离子存在下,不仅可发生间接电化学氧化,而且也同时发生直接电氧化. 对于析氯阳极体系,如Ti/Ru-Ti-Sn阳极,主要发生有机物的间接电氧化;对于高氧超阳极体系,如Ti/PbO2阳极,有机物的间接电氧化和直接电氧化可能同时发生. 氯离子对于有机物的间接电氧化起到类似催化剂的作用,这种催化作用主要是由于氯离子在有机物氧化过程中阳极表面层和溶液本体电生成了Cl-/活性氯的氧化还原媒介.  相似文献   

7.
以磷钼酸作为低温下碳间接电氧化的介质构建新型碳燃料电池。通过线性电位扫描和计时电流法研究不同碳材料、不同反应条件、不同反应时间、不同磷钼酸浓度对碳间接电氧化性能的影响。采用循环伏安法研究碳在磷钼酸介质中的间接电氧化机理。研究结果表明,椰壳活性炭的间接电氧化活性要明显高于煤和煤质活性炭。以磷钼酸为介质时,采用光照与升温80oC避光的条件均可以提高碳间接电氧化性能,且提高程度接近。由循环伏安测试分析出磷钼酸中+6价Mo可将碳氧化,且被还原成+5价Mo,随后又在阳极上重新被电氧化回+6价Mo,通过该过程将从碳材料上获得的电子转移到阳极上,从而实现碳在低温条件下的间接电氧化过程。并且通过对光照条件的分析,证实光对磷钼酸催化碳电氧化反应有两方面的促进作用:一方面光的热效应使反应温度升高,从而提高反应速率;另一方面磷钼酸利用其特有结构吸收光能,提高磷钼酸与碳的反应速率,且后者促进作用更明显。以VO2+/VO2+为阴极构建的碳燃料电池全电池室温下功率是0.087m W?cm-2,验证了碳燃料电池在常温条件下运行的可行性。  相似文献   

8.
以自制SBS-g-(AA/StSO3Na)/SBS-g-DMAEMA双极膜作电解槽阴阳两极室的隔膜,借助正交试验确定阴极电还原氧气产生过氧化氢的最优条件,进而利用钨酸钠/过钨酸钠体系由阴极间接电氧化红曲红制备红曲黄色素.实验表明:以石墨作电极,阳极液为10%硫酸溶液,阴极液为0.5g·L-1红曲红丙酮水溶液,添加钨酸钠(浓度15mmol/L),调节pH至3,在通氧速率65cm3/min,电流密度5.78mA.cm-2下电解2h,阴极平均电流效率可达72.39%.电解产物经红外表征和紫外跟踪分析,证实了红曲红烯键环氧化反应的发生.  相似文献   

9.
肖波  刘守清 《物理化学学报》2014,30(9):1697-1705
铁酸镍(NiFe2O4)中的镍原子抑制其光芬顿催化活性.然而,活性炭(AC)能激活其光芬顿催化活性,结果导致复合催化剂AC-NiFe2O4在过氧化氢存在时可见光辐射下也可催化氧化氨氮.用X射线衍射(XRD),透射电镜(TEM),傅里叶变换红外(FTIR)光谱,紫外-可见漫反射光谱(UV-Vis DRS),比表面积和振动样品磁强计对催化剂进行了表征.光催化降解氨氮的实验表明,该复合催化剂在10 h内氨氮的降解率可达到91.0%,而同样条件下没有催化剂时氨氮的去除率只有24.0%.对照实验表明,裸铁酸镍在可见光辐射下,氨氮的降解率只有30.0%.这表明活性炭加速了氨氮的氧化速率.动力学研究表明,氨氮的氧化遵循一级反应动力学规律,其表观反应动力学常数为3.538×10-3min-1.机理研究表明,氨氮的氧化是通过生成HONH2中间体,然后转化为NO2-.8次循环实验表明该复合催化剂容易分离、可循环使用、且催化活性十分稳定.因此,该催化剂具有潜在的应用价值.  相似文献   

10.
含硝基咔唑类有机电催化剂的合成及其对醇的电催化氧化   总被引:1,自引:0,他引:1  
有机小分子的电催化氧化是催化领域的一个重要研究内容.通过醇的选择性氧化合成相应醛或酮类化合物在精细化学品和有机化学中间体的合成领域均具有十分重要的意义.有机电催化合成用电子代替强氧化还原剂,可以使反应在比较温和的条件下进行.但在直接电氧化合成反应中,电极表面容易生成有机聚合物膜,使电极钝化,电流效率急剧下降.而在电子转移媒质作用下的有机电催化反应不仅可以避免电极表面钝化,还可以控制目标产物的过度氧化.三芳胺类化合物是一类新型的电氧化还原媒质,由于其具有较宽的电化学氧化还原电位已引起研究者的广泛关注.咔唑类化合物相比于三芳胺类具有更好的平面性,使得取代基效应更为显著.咔唑类化合物被广泛作为荧光材料,但用于电化学方面的研究很少.本文通过在咔唑类化合物中引入具有强吸电子性的硝基以提高该类化合物的氧化电位,并将其作为有机电催化媒质,采用间接电化学氧化的方式,在室温下研究醇的电化学催化氧化反应,合成相应醛类化合物.
  我们合成了三种含硝基咔唑类有机电催化剂,通过1H NMR对其结构进行了鉴定.采用循环伏安法测试了该类有机电催化剂的电化学氧化还原性能.发现取代基的电子效应对有机电催化剂的氧化还原电位及电化学氧化还原可逆性有很大的影响,供电子基(–OCH3)的引入使氧化电位负移(0.717 V),吸电子基(–Br)的引入使氧化电位明显正移(1.282 V).同时,取代基的引入有效改善了有机电催化剂的电化学可逆性,从而可以作为有效的电氧化还原媒质应用于电化学氧化反应中.而当把化合物中的NO2还原为NH2后,咔唑类化合物的电化学氧化还原可逆性完全消失,表明硝基的引入对咔唑类有机电催化剂的电化学性能有很大的影响.
  循环伏安结果发现,在咔唑类硝基化合物的作用下,对甲氧基苯甲醇(p-MBzOH)的电化学氧化峰电位从1.350 V降至1.286 V,表明可以在较低电位下进行电解,有效降低了电氧化反应的能耗,同时氧化峰电流明显增加,说明该类有机电催化剂对p-MBzOH具有良好的电催化性能.随着p-MBzOH浓度的增加,氧化峰电流也明显增大,说明在咔唑类有机电催化剂的作用下, p-MBzOH可以在比较高的浓度下进行电化学氧化电解.通过对不同对位取代基的苯甲醇类化合物进行循环伏安研究,发现含硝基咔唑类化合物对具有较高氧化电位的反应底物均表现出良好的电催化氧化性能.
  在含硝基咔唑类有机电催化剂的氧化电位(1.28 V)和室温下,对不同浓度的p-MBzOH进行恒电位电解6 h,发现当催化剂的用量为底物的2.5 mol%时, p-MBzOH可以完全转化为相应的醛类目标产物.而且恒电位电解后分离回收的含硝基咔唑类有机电催化剂仍具有良好的电化学氧化还原可逆性.  相似文献   

11.
酸性喷淋石墨屑电极氧还原为过氧化氢研究①陆兆锷*张关永钟天耕方国女(华东理工大学化学系,上海200237)石墨在碱液中对氧还原为过氧化氢根HO-2有良好的电催化作用.碱液喷淋的石墨屑床阴极已应用于氧还原制备HO-2[1~5].Sabupov[6]研究...  相似文献   

12.
将自制的双阳极电化学氢化物发生器作为离子色谱与原子荧光光谱的联用接口,建立了离子色谱-双阳极电化学氢化物发生-原子荧光光谱法在线分析砷形态系统.最佳实验条件为淋洗液6.0 mmol/L NH4H2PO4(pH 6.20),电解液0.40 mol/L H2SO4,电解液流量为阳极4.0 mL/min,阴极 1.5 mL/min,电解电流密度0.50 A/cm.2,载气流量300 mL/min,屏蔽气流量500 mL/min,氢气流量80 mL/min.在优化的实验条件下,As(Ⅲ)、DMA、MMA的线性范围为5~200 μg/L、As(Ⅴ)的线性范围为10~200 μg/L,As(Ⅲ)、DMA、MMA和As(Ⅴ)检出限分别为3.04、4.27、3.97和9.30 μg/L(信噪比S/N=3).50 μg/L的As(Ⅲ)、DMA、MMA和As(Ⅴ)混合标准溶液平行进样7次,得到的色谱峰面积的相对标准偏差(RSD)分别为415%、3.08%、519%和3.62%.将该方法用于牙髓失活材料中的砷形态分析.  相似文献   

13.
Degradation of o-chloronitrobenzene wastewater was experimentally investigated at a three-dimensional electrode(TDE) with granular activated carbon as the particle electrode, graphite as the anode, and stainless steel plate as the cathode. The kinetic model of o-chloronitrobenzene degradation was studied, and the effects of pH, electrolysis time, particle electrode, electrolyte concentration, and initial concentration of the solution on degradation efficiency were investigated to determine the optimal operating conditions. The degradation of o-chloronitrobenzene by oxidation at the TDE was monitored by chemical oxygen demand(COD) measurements, UV-Vis absorption, and high performance liquid chromatography(HPLC). COD degradation by electrochemical degradation followed pseudo-first order kinetics with respect to the concentration of o-chloronitrobenzene solutions. Optimal reaction conditions included 15 g of activated carbon as the particle electrode, 400 mg/L o-chloronitrobenzene solution containing 0.10 mol/L Na2SO4, pH=3, and 60 min of electrolysis. The UV-Vis absorption spectra and HPLC results illustrate that the benzene ring in o-chloronitrobenzene was rapidly broken down to form aliphatic substances through electrochemical degradation. COD degradation was approximately 98.5% at optimal conditions.  相似文献   

14.
辛可尼丁的催化氢波   总被引:3,自引:0,他引:3  
在浓度为0.2mol/L NH3·H2O-0.2mol/L NH4Cl(pH=9.20)的底液中,辛可尼丁在单扫示波极谱上有一灵敏的催化氢波。导数波峰电位于-1.42V(vs,SCE)附近。该峰具有一定吸附性。  相似文献   

15.
直接甲醇燃料电池性能   总被引:8,自引:0,他引:8  
采用商品Pt-Ru/C和Pt/C催化剂制备成甲醇阳极和氧阴极,Nafion-115为固体电解质膜,组装成面积为9cm^2单电池,研究了电池在放电运转过程中各种操作条件,如温度、氧气压力,甲醇浓度等对电池性能的影响,并考察了电池室温放电性能随时间的变化,发现增加电池的温度和 氧气压力均可明显提高电池性能,在合适的甲醇学及氧气压力下电池在室温具有一定的稳定放电性能。  相似文献   

16.
羧基化碳纳米管修饰碳糊电极伏安法测定食盐中碘酸根   总被引:2,自引:0,他引:2  
应用羧基化多壁碳纳米管(c-MWCNT)修饰碳糊电极,测定食盐中的碘酸根含量.在0.1 mol/L的NaOH电解液中,当IO3-在羧基化多壁碳纳米管修饰碳糊电极表面富集60 s,电位扫速为300 mV/s时,该修饰电极在线性扫描伏安图上能出现一灵敏的阴极溶出峰,峰电位为-0.52 V,峰电流与IO3-浓度在8.0×10-10~5.0×10-8mol/L和1.0×10-7~3.0×10-6mol/L的范围内成良好线关系,相关系数分别为0.999和0.998,检出限可达1.0×10-11mol/L;该修饰电极无汞,稳定性较好,用于加碘食盐中碘酸根含量的测定灵敏度高,平均回收率为101.1%.循环伏安(CV)测试表明,碘酸根在修饰电极上电化学反应是一不可逆过程,其电极反应标准均相速率常数为0.0109 cm.s-1.  相似文献   

17.
在0.02 mol/L NH4Cl-NH3.H2O(pH8.0)的底液中,采用循环伏安法测定葛根素,得到一良好的氧化峰,峰电位Ep=+0.57V,峰电流Ip与葛根素的浓度在1.046×10-7~5.767×10-5mol/L范围内成线性关系,相关系数r为0.9989,检出限为1.046×10-7mol/L.测定葛根中葛根素的含量,平均回收率在99.8%.并且研究了葛根素在玻碳电极上的电化学行为,结果表明葛根素的电极过程具有吸附性和不可逆性.  相似文献   

18.
制备了TiO2-石墨烯修饰玻碳电极。用循环伏安法(CV)和差分脉冲伏安法(DPV)对间苯二酚在该修饰电极的电化学行为进行了研究。实验结果表明,在pH值为6.0的磷酸盐缓冲液(PBS)中,该修饰电极对间苯二酚具有良好的电催化作用。对TiO2-石墨烯用量、支持电解质、pH和扫描速度等实验条件进行了优化。在优化条件下,利用DPV测定,间苯二酚的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈良好的线性关系,线性相关系数为0.995。检出限为2×10-7mol/L。将该方法应用于模拟水样中间苯二酚的测定,回收率为96.5~104.2%。  相似文献   

19.
2,2'-双氨基苯氧基二硫化物及其聚合物的合成研究   总被引:2,自引:0,他引:2  
在不同的锂或锂离子二次电池正极材料中 ,新型的聚有机二硫化物有可能成为最有应用前景的电池正极材料之一 [1] ,Visco等 [2 ]首次提出利用二硫化物中双硫键的断裂与再接 (即电聚合与电解聚 )化学性能应用于锂二次电池的充放电 .目前 ,对有代表性的有机二硫化物 2 ,5 -二巯基 -1 ,3 ,4-噻二唑(DMc T)进行了大量的研究[3~ 5] ,最近又提出通过合成新的聚有机二硫化物来提高其电化学性能[6 ,7] .为了得到一种新型高电化学活性和高导电性的锂或锂离子二次电池正极材料 ,本文通过化学方法合成2 ,2 -双氨基苯氧基二硫化物 (DAPD)单体 ,并通…  相似文献   

20.
在Ag(NH3)2+溶液中,在钛基体上电沉积出树枝状纳米银颗粒,研究了沉积电位对树枝状纳米银颗粒形成的影响,探讨了这种树枝状纳米银颗粒形成的机理,并研究了这种钛基树枝状纳米银电极(Ag/Ti)在碱性溶液中对甲醛氧化的电催化活性。结果表明,在30 mmol/LAg(NH3)2+以及沉积电位在-1.8~-1.2 V(vsAg)时,形成了形态为树枝状的纳米银颗粒。在沉积电位为-1.6 V(vs Ag),Ag(NH3)2+浓度为30 mmol/L的溶液中,电沉积制备的这种树枝状纳米银电极(Ag/Ti)对甲醛氧化具有强的电催化活性。循环伏安曲线表明,在0.1 mol/LNaOH溶液中以及甲醛的浓度范围在0~40 mmol/L,甲醛浓度和它的氧化峰电流密度呈现良好的线性关系,检测下限达到0.662 mmol/L,这种新型的树枝状纳米银电极有望作为甲醛检测的传感器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号