首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene-based materials exhibit unique properties that have been sought to utilize for various potential applications. Many studies suggest that graphene-based materials can be cytotoxic, which may be attributed to destructive effects on cell membranes.However, there still are conflicting results regarding interactions between graphene-based materials and lipid membranes. Here,through cryo-electron microscopy(Cryo-EM) and dye-leakage experiments along with in silico methods, we found that graphene oxide nanosheets induce significant membrane damage, while the effect of pristine graphene is negligible. We revealed the importance of heterogeneous oxidization of graphene-based nanosheets in damaging vesicle membranes. Moreover, that not only the oxidization degree but also the oxidization loci and membrane tension play important roles in the cytotoxicity of the graphene-based nanosheets.  相似文献   

2.
采用紧束缚近似方法,研究了三角形锯齿型石墨烯纳米片(Triangular zigzag graphene nanosheets, TZGN)的电子结构.研究表明单孔TZGN结构的零能级都是外边缘态,跟孔的大小没有关系.多孔TZGN结构受孔间结构的影响,零能级会随着孔数目的增加逐渐出现内外边缘耦合态,导带和价带能级个数也会随着孔的大小和孔的数量的增加而减少.研究结果拓宽了石墨烯纳米结构在纳机电器件方面的应用.  相似文献   

3.
We report catalyst‐free direct synthesis of vertical graphene nanosheets (VGNs) on SiO2/Si and quartz substrates using microwave electron cyclotron resonance – plasma enhanced chemical vapor deposition. The evolution of VGNs is studied systematically at different growth stages. Raman analysis as a function of growth time reveals that two different disorder‐induced competing mechanisms contributing to the defect band intensity. The VGNs grown on SiO2/Si substrates predominantly consists of both vacancy‐like and hopping defects. On the other hand, the VGNs grown on quartz substrates contain mainly boundary‐like defects. X‐ray photoemission spectroscopy studies also corroborate Raman analysis in terms of defect density and vacancy‐like defects for the VGNs grown on SiO2/Si substrates. Moreover, the grown VGNs exhibit a high optical transmittance from 95% to 78% at 550 nm and the sheet resistance varies from 30 to 2.17 kΩ/sq. depending on growth time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This study examined the dispersion behavior of graphene oxide (GO) and oxidized carbon nanotubes (o-CNT) in a polar solvent, as well as the differences in the behavior related to the Hansen solubility parameter windows. In polar aprotic solvents, GO and o-CNT showed similar dispersion behavior. On the other hand, in polar protic solvents, such as ethanol and isopropanol, GO did not show dispersion stability whereas the o-CNTs did. This difference in the dispersion behavior between GO and o-CNTs resulted from the stronger hydrogen bonding between the GO interlayer induced by a large amount of oxygen functional groups and flexible two-dimensional morphology with a large surface area.  相似文献   

5.
Two-dimensional carbon nanosheets have been fabricated using inductively coupled radio frequency plasma-enhanced chemical vapour deposition. The structural properties of the nanosheets have been characterised using atomic force microscopy, scanning electron microscopy and X-ray diffractometer. The magnetisation of the samples was studied using vibrating sample magnetometer. The magnetisation of the nanosheets was found to be diamagnetic for fast synthesis processes (30 and 60 min). On the other hand, the nanosheets exhibited a weak ferromagnetic response for the slow (120 min) synthesis process. Energy dispersive spectrometry and atomic absorption spectroscopy confirmed that the magnetisation exhibited by the carbon nanosheets was an intrinsic property and that it was not due to contamination from the substrate. Raman spectroscopy studies revealed that the ferromagnetic carbon nanosheets have a higher ratio (1.20) of graphite peak (I G) to disordered peak (I D) than normally expected (0.75–0.90). Available data indicated that the magnetisation was due to the presence of structural disorders.  相似文献   

6.
《Physics letters. A》2019,383(18):2193-2200
We study magnetic field control of current through model graphene nanosheet junctions within the framework of the tight-binding approximation. Geometrical asymmetry in the coupling of graphene nanosheets to the contact leads emerges as one of the most important determining factors for the magnetic field control of current. The asymmetric connection split the otherwise degenerate energy levels of the structures leading to energy-resolved transmission peaks which the applied field modulates for a transmission maximum by narrowing the energy gap between the split energy levels. Also, the contact coupling strength plays a decisive role in controlling current in small structures, while its role is significantly less in large structures that have more closely-spaced energy levels. Model calculations on a graphene nanosheet junction with inter-site Coulomb interaction is found to sustain sensitivity to the applied magnetic field. Although several factors bear direct effect on the electron transport through molecular junctions, suitably constructed graphene nanosheet junctions would greatly enhance the prospects of current control under applied magnetic fields.  相似文献   

7.
8.
Graphene oxide (GO) and reduced graphene oxide (CRGO), as a graphene derivatives, possess unique properties and a high aspect ratio, indicating great potential in nanocomposite fields. The present work reports the fabrication of the nanocomposite films by a simple and environmentally friendly process using aqueous solution and optimized time sonication for better exfoliation of the graphene sheets within Poly(Vinyl alcohol) (PVA) as matrix. The films were characterized using high-resolution TEM (HRTEM), X-ray diffraction (XRD), Microtensile testing, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The TEM images revealed a successfully exfoliation of the GO/CRGO nanosheets. XRD combined with TGA and DSC measurements showed an improvement in the thermal stability and tunable thermal properties. In addition, the Young's modulus and tensile yield strength of the composite films containing 1 wt% GO were obtained to be 4.92 GPa and 66 MPa respectively. These excellent reinforcement effects were achieved by the strong interaction between the components.  相似文献   

9.
10.
Oxide graphene (GO) nanosheets were prepared by modified Hummers and Offeman methods. The products were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), and thermogravimetric analysis (TGA). The tribological properties of GO nanosheets as water-base lubricant additive were investigated using a UMT-2 ball-plate tribotester. By the addition of GO nanosheets in pure water, the antiwear ability was improved and the friction coefficient was decreased. The water with GO nanosheets showed better tribological properties than the water with oxide multiwall carbon nanotubes (CNTs-COOH). It is concluded that the formation of a thin physical tribofilms on the substrate can explain the good friction and wear properties of GO nanosheets.  相似文献   

11.
《Current Applied Physics》2018,18(11):1327-1337
This paper investigates the vibration behavior of pristine and defected triangular graphene sheets; which has recently attracted the attention of researchers and compare these two types in natural frequencies and sensitivity. Here, the molecular dynamics method has been employed to establish a virtual laboratory for this purpose. After measuring the different parameters obtained by the molecular dynamics approach, these data have been analyzed by using the frequency domain decomposition (FDD) method, and the dominant frequencies and mode shapes of the system have been extracted. By analyzing the vibration behaviors of pristine triangular graphene sheets in four cases (right angle of 45-90-45 configuration, right angle of 60-90-30 configuration, equilateral triangle and isosceles triangle), it has been demonstrated that the natural frequencies of these sheets are higher than the natural frequency of a square sheet, with the same number of atoms, by a minimum of 7.6% and maximum of 26.6%. Therefore, for increasing the resonance range of sensors based on 2D materials, non-rectangular structures, and especially the triangular structure, can be considered as viable candidates. Although the pristine and defective equilateral triangular sheets have the highest values of resonance, the sensitivity of defective (45,90,45) triangular sheet is more than other configurations and then, defective (45,90,45) sheet is the worst choice for sensor applications.  相似文献   

12.
Scanning probe microscopy study of exfoliated oxidized graphene sheets   总被引:1,自引:0,他引:1  
Exfoliated oxidized graphene (OG) sheets, suspended in an aqueous solution, were deposited on freshly cleaved HOPG and studied by ambient AFM and UHV STM. The AFM images revealed oxidized graphene sheets with a lateral dimension of 5–10 μm. The oxidized graphene sheets exhibited different thicknesses and were found to conformally coat the HOPG substrate. Wrinkles and folds induced by the deposition process were clearly observed. Phase imaging and lateral force microscopy showed distinct contrast between the oxidized graphene and the underlying HOPG substrate. The UHV STM studies of oxidized graphene revealed atomic scale periodicity showing a (0.273 ± 0.008) nm × (0.406 ± 0.013) nm unit cell over distances spanning few nanometers. This periodicity is identified with oxygen atoms bound to the oxidized graphene sheet. I(V) data were taken from oxidized graphene sheets and compared to similar data obtained from bulk HOPG. The dI/dV data from oxidized graphene reveals a reduction in the local density of states for bias voltages in the range of ±0.1 V.  相似文献   

13.
Ionics - A ferrocene-derivative compound, 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one (2,7-BFE), was synthesized and used to construct a modified graphene paste electrode. The electrooxidation of...  相似文献   

14.
The effect of oxygenation on the electronic properties of semiconducting carbon nanotubes is studied from first principles. The O2 is found to bind to a single-walled nanotube with an adsorption energy of about 0.25 eV and to dope semiconducting nanotubes with hole carriers. Weak hybridization between carbon and oxygen is predicted for the valence-band edge states. The calculated density of states shows that weak coupling leads to conducting states near the band gap. The oxygen-induced gap closing for large-diameter semiconducting tubes is discussed as well. The influence of oxygen on the magnetic property is also addressed through a spin-polarized calculation and compared to experiment.  相似文献   

15.
Biofunctionalization and manipulating of graphene nanosheets (GNS) are important for biomedical research and application. Chitosan (CS) modified graphene nanosheets have been successfully prepared under microwave irradiation in N,N-dimethylformamide medium, which involved the reaction between the carboxyl groups of graphene oxide nanosheets (GONS) and the amido groups of chitosan followed by the reduction of graphene oxide nanosheets into graphene nanosheets using hydrazine hydrate. The as-prepared graphene nanosheets-chitosan (GNS-CS) nanocomposites have been characterized by FTIR, TEM, FESEM, XRD and TG. The results showed that chitosan was covalently grafted onto the surface of graphene nanosheets via amido bonds. Solubility measurements indicated that the resultant nanocomposites dispersed well in aqueous acetic acid. Especially, the electrorheological (ER) properties of the GNS-CS nanocomposites have been investigated. It is believed that this new nanocomposites may be promising for biomedical applications.  相似文献   

16.
Through the equivalence of potential energy and elastic strain energy, a molecular-continuum model combining the concepts of molecular dynamics and continuum mechanics is proposed. Unlike the usual test performed by applying forces, in this model a uniform strain field is employed in the representative volume element of specimens. Through this model, the Young’s moduli, Poisson’s ratios, and shear modulus of graphene sheets and carbon nanotubes (armchair, zigzag, or chiral) can all be written as a simple rational function in which the dependence of radius, chiral angle and thickness can be observed clearly from the explicit closed-form expression. Moreover, according to the proposed molecular-continuum model, an integrated symbolic and numerical computational scheme (ISNC) is established to deal with the general nanoscale elastic solids. Identical results of the closed-form solutions and ISNC verify the correctness of our derivation. Comparison with the results obtained by the other methods or by different potential energy function further justifies the simplicity, validity and efficiency of the proposed model.  相似文献   

17.
This paper reports on the results of analyzing the possibility of synthesizing explosive decompression-resistant rubbers based on a Therban hydrogenated acrylonitrile-butadiene rubber containing a mixture of technical-grade detonation carbon (from 0.14 to 27.10 wt %) and fillers with different degrees of dispersion and anisometry. The addition of detonation carbon affects both the α relaxation associated with the segmental mobility and the slow λ relaxation of ordered microblocks. A new class of highly elastic materials that are resistant to explosive decompression is designed and synthesized using technical-grade detonation carbon in a mixture with fillers of different compositions and structures.  相似文献   

18.
Carbonaceous nanosheets decorated with amino-functionalized organosilica nanoparticles have been synthesized by a direct pyrolysis of betaine at 400 °C in air, followed by a simple surface treatment with ([3-(2-aminoethylamino) propyl]trimethoxysilane under reflux conditions. Both pristine and organosilica modified carbon nanosheets (OMCNs), were characterized by Fourier-transform infrared (FTIR), Raman, and electron paramagnetic resonance (EPR) spectroscopies, transmission electron microscopy and thermal analysis methods. The experimental data reveal a dramatic increase in the number of radical centers on the surface of the developed OMCN hybrid. The organosilica nanoparticles, ranging in size between 3 and 15 nm, are spherical and homogenously anchored on the surface of carbon nanosheets. The formation of COSi bridges between carbon sheets and the organosilica nanoparticles has been supported by FTIR and EPR. These nanoparticles are bound to the nanosheet surface together with individual functional organosilane groups at a spacing of about 4 Å distance. The final hybrid is the complex nanosystem composed of 2D carbon nanosheets, spherical organosilica nanoparticles and immobilized amino organosilane molecules.  相似文献   

19.
On the basis of the results of investigations carried out by differential scanning calorimetry, X-ray diffraction, nuclear magnetic resonance, high-resolution transmission electron microscopy, and Raman spectroscopy, a scheme for the transformation of detonation nanodiamonds (which are agglomerates of smaller particles) into onion-like carbon nanoparticles during vacuum annealing is verified. At high temperatures, the transition of an individual nanodiamond occurs in a short period of time and may proceed via an amorphous state.  相似文献   

20.
We report a solvothermal method preparation of dendritic Pd nanoparticles(DPNs) and spherical Pd nanoparticles(SPNs) supported on reduced graphene oxide(RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide(GO) under mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号