首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Surface texturing (for example, producing micro dimples on the surface) of mechanical parts has a great potential to improve the surface tribological properties. Surface texturing through nanosecond laser ablation has many associated advantages and hence has drawn lots of attentions. However, the produced micro dimple bottom (if through laser spot scanning) is often very rough, which may harm the surface tribological properties. In this paper, a two-step laser surface texturing process is proposed and studied, where a relatively high-fluence laser ablation step (which is to create dimples) is followed by a low-fluence laser-induced melting, melted material flow and re-solidification step (which is to smooth the ablated dimple bottom surface). The study shows that the two-step laser surface texturing process can produce dimples with very smooth bottom surfaces. The effects of laser pulse duration and scan speed in Step 2 on the dimple bottom surface morphology and roughness have also been investigated, and some very interesting physical phenomena have been found, which have been rarely reported before in literature. Some hypothesized explanations are given for the observed effects, which require future work to completely understand their underlying mechanisms.  相似文献   

3.
Hydrogenated amorphous silicon (a-Si:H) thin films have been considered for use in solar cell applications because of their significantly reduced cost compared to crystalline bulk silicon. However, their overall efficiency and stability are lower than that of their bulk crystalline counterpart. Limited work has been performed on simultaneously solving the efficiency and stability issues of a-Si:H. Previous work has shown that surface texturing and crystallization on a-Si:H thin film can be achieved through a single-step laser processing, which can potentially alleviate the disadvantages of a-Si:H in solar cell applications. In this study, hydrogenated and dehydrogenated amorphous silicon thin films deposited on glass substrates were irradiated by KrF excimer laser pulses and the effect of hydrogen on surface morphologies and microstructures is discussed. Sharp spikes are focused only on hydrogenated films, and the large-grained and fine-grained regions caused by two crystallization processes are also induced by presence of hydrogen. Enhanced light absorptance is observed due to light trapping based on surface geometry changes of a-Si:H films, while the formation of a mixture of nanocrystalline silicon and original amorphous silicon after crystallization suggests that the overall material stability can potentially improve. The relationship between crystallinity, fluence and number of pulses is also investigated. Furthermore, a step-by-step crystallization process is introduced to prevent the hydrogen from diffusing out in order to reduce the defect density, and the relationship between residue hydrogen concentration, fluence and step width is discussed. Finally, the combined effects show that the single-step process of surface texturing and step-by-step crystallization induced by excimer laser processing are promising for a-Si:H thin-film solar cell applications.  相似文献   

4.
Optical and Quantum Electronics - High performance InAs/GaSb superlattices for long-wavelength infrared detection were grown on a 4-in. GaSb wafer using molecular beam epitaxy. The influence of the...  相似文献   

5.
In the present paper, optical fibers are used as focusing unit in the process of laser surface texturing, which can effectively decrease the area of the focused facular point. An original experimental equipment was built and described. Micro-textures of parallel grooves and meshed textures were produced on silicon surface. Extensive experiments proved that micro-marking of 2–3 μm could be etched with proper focusing distance.  相似文献   

6.
7.
Laser texturing is a novel technique that may be used to texture a cold roller in the process of manufacturing high quality steel sheets. With the aim of improving the quality of the textured roller by using a CO2 laser, a new laser beam modulating device is proposed. An optical beam expander with a fast rotating chopper system is designed. The laser pulse is split into two parts by the chopper blades; one is the preheating pulse that is reflected onto optical loop mirrors; the other is the directly transmitted pulse that creates the craters at the preheated spots. The preheating beam focus spot size and position can be adjusted. The focusing characteristics and optical parameter compensation for the flying optics are investigated. The heat transfer and melt process of laser texturing are numerically simulated. The effects of the double pulses on the texturing are analyzed. The effect of preheating the sample ahead of the laser texturing pulse is examined. The surface profile and bump hardness show improvements by using this approach.  相似文献   

8.
Active surfaces of plastic injection moulds are nowadays textured using classical techniques (chemical etching or EDM). Replacement of these technologies by a laser technology introduces a big flexibility: absence of mechanical contact with the tool, decrease of the effluent's volume and a big machining precision, even in the case of the complex forms as injection moulds for example. This paper reports the experimental study of the surface laser texturing of TA6V alloy. The influence of the operating factors on the laser texturing process has been studied using two experimental approaches: Taguchi methodology and response surface methodology (RSM). Empirical models have been developed. They allowed us to determine a correlation between process operating factors and performance indicators, such as surface roughness and material removal rate. Results analysis shows that the laser pulse energy and frequency are the most important operating factors. Mathematical models, that have been developed, can be used for the selection of operating factors’ proper values in order to obtain the desired values of the objective functions.  相似文献   

9.
The relationship between Regge behaviour of two-body amplitudes and quantum number exchange in multiparticle production is analyzed. An exact bound on the elastic forward peak in terms of inclusive p correlations is given. Another result is that one cannot obtain α? > αP from overlap calculations, using only the present inclusive data as input.  相似文献   

10.
Low surface energy polymer thin-films can be applied to surfaces to increase hydrophobicity and reduce friction for a variety of applications. However, wear of these thin films, resulting from repetitive rubbing against another surface, is of great concern. In this study, we show that highly hydrophobic surfaces with persistent abrasion resistance can be fabricated by depositing fluorinated carbon thin films on sandblasted glass surfaces. In our study, fluorinated carbon thin films were deposited on sandblasted and as-received smooth glass using deep reactive ion etching equipment by only activating the passivation step. The surfaces of the samples were then rubbed with FibrMet abrasive papers in a reciprocating motion using an automatic friction abrasion analyzer. During the rubbing, the static and kinetic friction forces were also measured. The surface wetting properties were then characterized using a video-based contact angle measuring system to determine the changes in water contact angle as a result of rubbing. Assessment of the wear properties of the thin films was based on the changes in the water contact angles of the coated surfaces after repetitive rubbing. It was found that, for sandblasted glass coated with fluorinated carbon film, the water contact angle remained constant throughout the entire rubbing process, contrary to the smooth glass coated with fluorinated carbon film which showed a drastic decrease in water contact angle with the increasing number of rubbing cycles. In addition, the static and kinetic friction coefficients of the sandblasted glass were also much lower than those of the smooth glass.  相似文献   

11.
ArF laser treatment of polyethersulfone (PES) films was performed to improve biocompatibility of surfaces. For this purpose, the threshold fluence for laser ablation of PES was obtained from experimental measurements and then samples were irradiated at 2 separate ranges of fluences, i.e. below and above the ablation threshold. In order to investigate the physico-chemical changes, the modified surfaces were characterized by attenuated total reflectance (ATR) infrared spectroscopy and contact-angle measurements. The biocompatibility of the treated samples in comparison to those untreated was examined in vitro using a platelet adhesion test. The number of adhered platelets was obtained using the lactate dehydrogenase (LDH) method. For surfaces irradiated below the ablation threshold, a high reduction in the number of the adhered platelets was observed; while this number increased in samples treated at the fluence above the ablation threshold. The change in platelet adhesion was attributed to the change in chemistry and roughness of the irradiated surfaces.  相似文献   

12.
为了研究飞秒激光脉冲数目与硅表面形貌之间的关系,在相同的SF6气体氛围下,改变照射硅表面的飞秒激光脉冲数,发现在飞秒激光照射下由硅表面形成的微型锥状尖峰的高度与飞秒激光脉冲数呈现一种非线性关系.通过对该关系的研究有利于找出在制造具有较高吸收效率的高微型锥状尖峰的"黑硅"的实验条件,有利于基于"黑硅"材料的光电器件转化效...  相似文献   

13.
Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.  相似文献   

14.
The dependence of Auger depth resolution and surface texturing on primary ion species was systematically investigated for polycrystalline Al, Mo, Ag and Ta films deposited on Si wafers, using 3 keV Ne+, Ar+ and Xe+ ions as projectiles. The resolution was found to depend strongly on ion species; the higher the ion mass, the better the resolution. The resolution improvement attained with Xe+ ions was dramatic for Al, becoming less pronounced for higher mass targets. As revealed by high-resolution scanning electron microscopy, Xe+ sputtering led to less-developed topographical structures of sputtered areas, which allowed us to conclude that ion sputtering with heavier ions roughens the surface less, resulting in a marked improvement in resolution.  相似文献   

15.
The surface texture of a metallic surface plays an important role in its adhesion strength in an adhesion joint. The same applies to medical implants in regard to fixation and tissue integration. To achieve a strong adhesion for a structural joint or a bone tissue fixation for medical implants, the effects of laser drilled micro-holes at the surface of the metals were investigated. The effect of the number of holes per unit area on the adhesion strength of the adhesion joint was evaluated and the results showed that the number of holes per unit area on the adherend surface logarithmically correlated with the bonding strength. Other holes geometries are suggested for enhanced adhesion and bone tissue fixation.  相似文献   

16.
This work proposes a new texturing technique of monocrystalline silicon surface for solar cells with sodium hypochlorite. A mixed solution consisting of 5 wt% sodium hypochlorite and 10 vl% ethanol has been found that results in a homogeneous pyramidal structure, and an optimal size of pyramids on the silicon surface. The textured silicon surface exhibits a lower average reflectivity (about 10.8%) in the main range of solar spectrum (400–1000 nm).  相似文献   

17.
Laser surface texturing process involves creation of microfeatures, e.g., tiny dimples, usually distributed in a certain pattern, covering only a fraction of the surface of the material that is being treated. The process offers several advantages for tribological applications, including improved load capacity, wear resistance, lubrication lifetime, and reduced friction coefficient. In the present study, the surface modification of gray cast iron, using millisecond (λ = 1,064 nm), nanosecond (λ = 1,064 nm) and femtosecond (λ = 800 nm) pulse duration laser irradiation, is adopted to establish a particular geometrical pattern with dimple features and dimensions, to improve wear and friction behavior. The effect of various laser processing parameters, including laser pulse energy, pulse duration and processing speed, on the performance characteristics of the laser-treated samples is investigated. The microtextured surfaces were produced on gray cast iron using different millisecond (0.5 ms), nanosecond (40 ns) and femtosecond (120 fs) laser source with the dimple depth between 3 and 15 μm. The coefficient of friction for the untextured surface was ~0.55, millisecond laser textured ~0.31, nanosecond laser textured ~0.02 and femtosecond laser ~0.01, under normal force of 50 N and sliding speed of 63 mm/s. Surface texturing of the gray cast iron surface using femtosecond pulse duration resulted in significant improvement in wear resistance in comparison to the untextured as well as millisecond and nanosecond laser-textured surface.  相似文献   

18.
We present the optical analysis of spatial single-mode monolithic quantum cascade laser arrays in the mid-IR. Subwavelength parallel microstripe waveguides are buried into InP:Fe and phase locked by evanescent coupling. Lasing at room temperature is obtained at λ=8.4 μm. We describe the near- and far-field of stripe arrays comprising up to 32 emitters. One hundred percent coherent emission is shown experimentally and well accounted for by a standard optical simulation.  相似文献   

19.
为了提高5052铝合金的粘接性能,利用脉冲光纤激光的短脉冲和高峰值功率的特性,对铝合金试件进行了激光毛化试验研究。通过正交实验法,研究了平均功率、扫描速度、脉冲频率和脉冲宽度等工艺参数对激光毛化质量的影响,以及各工艺参数的影响权重,并求得最佳工艺参数,最佳工艺参数为平均功率90 W、扫描速度10 mm/s、脉冲频率1000 kHz、脉冲宽度200 ns。根据优化后的工艺参数,加工获得了粗糙度2.35 μm,然后对激光毛化后的铝合金试件进行单搭接拉伸试验,研究发现粘接强度随着粗糙度的增大而增大,当粗糙度到达一定程度时,粘接强度反而会随着粗糙度的增大而减小。另外,粘接强度还跟铝合金表面的微织构的类型及疏密程度都有很大关系。  相似文献   

20.
Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of −800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号