首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on the growth of silicon nanowires on photostructurable glass by low-pressure chemical vapour deposition. Thereby, no additional catalyst was needed to stimulate the growth process. Instead, a self-organized crystallization process leads to the formation of metallic clusters and seed crystals within the glass, which are supposed to initialize the nanowire growth. The nanowires were contacted by direct deposition of Pt using a focussed ion beam system and characterized electrically.  相似文献   

2.
Organic semiconductor materials are becoming a promising subject of not only scientific interest but also potential applications in the field of new energy resources. In this study, the copper phthalocyanine (CuPc) films as an excellent organic semiconductor were self-assembly grown on indium tin oxide glass by electrodeposition, the structural and electronic properties were investigated using various techniques. The results demonstrated that ordered α-form crystalline CuPc films were obtained. The decrease of electron work function of CuPc films with the increase of film thickness was found, which was obviously dependent on the surface morphology. The understanding of these behaviors of CuPc films will be significant for designing related photoelectric devices.  相似文献   

3.
The array of quasi-one-dimensional indium chains in the Si(111)- (4x1)-In surface reconstruction exhibits a phase transition to a low-temperature (8x2) phase. It has been suggested that this phase transition is related to a charge density wave (CDW) formation. The x-ray diffraction results presented here demonstrate that at 20 K the CDW has not yet condensed into a superstructure even though good transverse coupling was established. This indicates that CDW formation cannot be the driving force for the phase transition. Furthermore we elucidate the subtle highly anisotropic interchain correlations and reveal the detailed atomic structure of the low-temperature (8x2) phase.  相似文献   

4.
Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as ~9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature.  相似文献   

5.
Atomic-layer-deposited(ALD) aluminum oxide(Al_2O_3) has demonstrated an excellent surface passivation for crystalline silicon(c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-based thermal atomic layer deposition of Al_2O_3 films are fabricated for c-Si surface passivation. The influence of deposition conditions on the passivation quality is investigated. The results show that the excellent passivation on n-type c-Si can be achieved at a low thermal budget of 250℃ given a gas pressure of 0.15 Torr. The thickness-dependence of surface passivation indicates that the effective minority carrier lifetime increases drastically when the thickness of Al_2O_3 is larger than 10 nm. The influence of thermal post annealing treatments is also studied. Comparable carrier lifetime is achieved when Al_2O_3 sample is annealed for 15 min in forming gas in a temperature range from 400℃ to 450℃. In addition, the passivation quality can be further improved when a thin PECVD-SiN_x cap layer is prepared on Al_2O_3, and an effective minority carrier lifetime of2.8 ms and implied Voc of 721 mV are obtained. In addition, several novel methods are proposed to restrain blistering.  相似文献   

6.
It was demonstrated that the etching in HF-based aqueous solution containing AgNO3 and Na2S2O8 as oxidizing agents or by Au-assisted electroless etching in HF/H2O2 solution at 50 °C yields films composed of aligned Si nanowire (SiNW). SiNW of diameters ∼10 nm were formed. The morphology and the photoluminescence (PL) of the etched layer as a function of etching solution composition were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence. It was demonstrated that the morphology and the photoluminescence of the etched layers strongly depends on the type of etching solution. Finally, a discussion on the formation process of the silicon nanowires is presented.  相似文献   

7.
Highly oriented VO2(B), VO2(B) + V6O13 films were grown on indium tin oxide glass by radio-frequency magnetron sputtering. Single phase V6O13 films were obtained from VO2(B) +V6O13 films by annealing at 480℃ in vacuum. The vanadium oxide films were characterized by x-ray diffraction and x-ray photoelectron spectra (XPS). It was found that the formation of vanadium oxide films was affected by substrate temperature and annealing time, because high substrate temperature and annealing were favourable to further oxidation. Therefore, the formation of high valance vanadium oxide films was realized. The V6O13 crystalline sizes become smaller with the increase of annealing time. XPS analysis revealed that the energy position for all the samples was almost constant, but the broadening of the V2p3/2 line of the annealed sample was due to the smaller crystal size of V6O13.  相似文献   

8.
In this study, we report on the trench-template assisted fabrication of nanowires for thermally evaporated indium and silicon thin films on quartz substrate. Length of the nanowires is completely dependent on the length of the trench, whereas the diameter of the nanowires is dependent on the thickness of the thin film. The diameter of nanowire increases from 200 nm to 1 μm when the thickness was increased from 15 to 60 nm. It is observed that nanowires diameter is invariably controlled by material deposition thickness. Average crystallite sizes for 60 nm indium and silicon deposition inside the trench are 120 and 35 nm, respectively. Nanowire surface plasmon peak shift as compared to the same thickness untemplated continuous thin film is more for thinner nanowires. This technique of nanowire fabrication is shown to be versatile in nature.  相似文献   

9.
We study the Pb growth on both √3 × √3-In and 4 × 1-In reconstructed Si(111) surfaces at room and low temperature (160 K). The study takes place with complementary techniques, to investigate the role of the substrate reconstruction and temperature in determining the growth mode of Pb. Specifically, we focus on the correlation between the growth morphology and the electronic structure of the Pb films. The information is obtained by using Auger electron spectroscopy, low energy electron diffraction, soft x-ray photoelectron spectroscopy, scanning tunneling microscopy and spot profile analysis-low energy electron diffraction. The results show that, at low temperature and coverage ≤12 ML on the Si(111)√3 × √3-In surface, Pb does not alter the initial semiconducting character of the substrate and three-dimensional Pb islands with poor crystallinity are grown on a wetting layer. On the other hand, for the same coverage range, Pb growth on the Si(111)4 × 1-In surface results in metallic Pb(111) crystalline islands after the completion of a double incomplete wetting layer. In addition, the bond arrangement of the adatoms is studied, confirming that In adatoms interact more strongly with the silicon substrate than the Pb ones. This promotes a stronger Pb-Pb interaction and enhances metallization. The onset of the metallization is correlated with the amount of pre-deposited In on the Si(111) surface. The decoupling of the Pb film from the 4 × 1-In interface can also explain the unusual thermal stability of the uniform height islands observed on this interface. The formation of these Pb islands is driven by quantum size effects. Finally, the different results of Pb growth on the two reconstructed surfaces confirm the importance of the interface, and also that the growth morphology, as well as the electronic structure of the Pb film can be tuned with the initial substrate reconstruction.  相似文献   

10.
Silicon nanowires (SiNWs) have been grown on crystalline silicon (Si), indium tin oxide (ITO) and stainless steel (SS) substrates using a gold catalyst coating with a thickness of 200 nm via pulsed plasma-enhanced chemical vapor deposition (PPECVD). Their morphological, mineralogical and surface characteristics have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman analysis. SiNWs growth is accompanied by oxidation, thus yielding partially (SiO x ) and fully oxidized (SiO2) Si sheaths. The mean diameters of these SiNWs range from 140 to 185 nm. Si with (111) and (220) planes exists in SiNWs grown on all three substrates while Si with a (311) plane is detected only for Si and ITO substrates. Computational simulation using density functional theory (DFT) has also been conducted to supplement the experimental Raman analyses for crystalline Si and SiO2. XPS results reveal that ca. 30 % of the SiNWs have been oxidized for all substrates. The results presented in this paper can be used to aid selection of appropriate substrates for SiNW growth, depending on specific applications.  相似文献   

11.
Local structure of indium oxynitride thin films grown on silicon substrates was investigated by X‐ray absorption fine structure technique incorporated with first principle calculations. The thin films were grown by using reactive gas timing radio frequency (RF) magnetron sputtering technique with nitrogen (N2) and oxygen (O2) as reactive gasses. The reactive gasses were interchangeably fed into sputtering system at five different time intervals. The gas feeding time intervals of N2:O2 are 30 : 0, 30 : 5, 30 : 10, 30 : 20 and 10 : 30 s, respectively. The analysis results can be divided into three main categories. Firstly, the films grown with 30 : 0 and 30 : 5 s gas feeding time intervals are wurtzite structure indium nitride with 25 and 43% oxygen contaminations, respectively. Secondary, the film grown with 10 : 30 s gas feeding time intervals is bixbyite structure indium oxide. Finally, the films are alloying between indium nitride and indium oxide for other growth condition. The fitted radial distribution spectra, the structural parameters and the combination ratios of the alloys are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Studied of the photoluminescent decay of Si:In bound excitons in the temperature range 10 to 30°K show that the decay is limited by the capture of the exciton on the neutral In site. Measurements of the decay time give values for the capture cross section which change rapidly with temperature ranging between greater than 10-13cm2 at 10°K to about 10-15cm2 at 30°K.  相似文献   

13.
CuInxGa1−xSeyS2−y (CIGS) thin films were synthesized on glass substrates by a paste coating of Cu, In, and Ga precursor solution with a three-step heat treatment process: oxidation, sulfurization, and selenization. In particular, morphological changes of CIGS films for each heat treatment step were investigated with respect to the kinds of glass substrates: bare, Mo-coated, and F-doped SnO2 (FTO) soda-lime glasses. Very high quality CIGS film with large grains and low degree of porosity was obtained on the bare glass substrate. Similar morphology of CIGS film was also acquired on the Mo-coated glass except the formation of an undesired Mo oxide interfacial layer due to the partial oxidation of Mo layer during the first heat treatment under ambient conditions. On the other hand, CIGS film with much smaller grains and higher degree of porosity was gained when FTO glass was used as a substrate, resulting in slight solar to electricity conversion behavior (0.20%). Higher power conversion efficiency (1.32%) was attained by the device with the CIGS film grown on Mo-coated glass in spite of the presence of a Mo oxide impurity layer.  相似文献   

14.
Indium nitrate and thiourea were used as the precursor solutions for preparing indium sulfide thin films using Chemical Spray Pyrolysis (CSP) technique. Films having various In/S ratios were characterized using X-Ray Diffraction (XRD), Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), optical absorption, transmission and photosensitivity measurements. Sample having In/S ratio 2/3 showed better crystallinity with band gap 2.66 eV. Depth profile of the sample also indicated the formation of indium sulfide. It was also observed that In/S ratio in the initial precursor solution determined the composition as well as electrical properties of the films. Maximum photosensitivity was observed for the sample prepared using solution having In/S ratio 2/4.  相似文献   

15.
Effects of multi-step rapid thermal annealing of plasma-deposited amorphous silicon films on Corning 7059 glass are investigated. A three-step rapid thermal annealing for 10 s/step at 730° C after film deposition reduces the activation energy of electrical conductivity for silicon films from 0.64 to 0.51 eV and causes (111) grain growth with a size of 1500 Å, which is determined using scanning electron microscopy, Raman spectroscopy and X-ray diffractometry.  相似文献   

16.
Although most solar cell modules to date have been based on crystalline or polycrystalline wafers, these may be too material intensive and hence always too expensive to reach the very low costs required for large-scale impact of photovoltaics on the energy scene. Polycrystalline silicon on glass (CSG) solar cell technology was developed to address this difficulty as well as perceived fundamental difficulties with other thin-film technologies. The aim was to combine the advantages of standard silicon wafer-based technology, namely ruggedness, durability, good electronic properties and environmental soundness with the advantages of thin-films, specifically low material use, large monolithic construction and a desirable glass superstrate configuration. The challenge has been to match the different preferred processing temperatures of silicon and glass and to obtain strong solar absorption in notoriously weakly-absorbing silicon of only 1–2 micron thickness. A rugged, durable silicon thin-film technology has been developed with amongst the lowest manufacturing cost of these contenders and confirmed efficiency for small pilot line modules already in the 10–11% energy conversion efficiency range, on the path to 12–13%.  相似文献   

17.
18.
The epitaxial growth of nanometer-scale structures on non-single crystalline surfaces is proposed and demonstrated. Hydrogenated amorphous silicon was deposited onto an SiO2 surface by plasma-enhanced chemical vapor deposition. Indium phosphide was deposited on the amorphous silicon by low-pressure metalorganic chemical vapor deposition in the presence of colloidal gold particles as catalysts. Under specific growth conditions, the indium phosphide formed nanoneedles connected to a microcrystalline silicon film nucleated within the amorphous silicon during the growth of the nanoneedles. Transmission electron microscopy revealed the presence of two different crystallographic structures: zinc-blende and wurtzite. Micro-photoluminescence measurements at room temperature showed two peaks with substantial blue-shifts with respect to that of bulk zinc-blende indium phosphide. PACS 81.16.Hc; 81.07.Vb; 68.65.La  相似文献   

19.
Results of the studies of optical properties of anti-reflective glasses with various texturization patterns, which were used as a coating for crystalline silicon solar cells, are presented. It was found that glass samples sorted by their optical transmittance demonstrated the same order as when sorted by their solar-cell short-circuit current enhancement parameter. The value of the latter depended on the parameters of texturization, such as the surface density of inclusions and their profile, and the depth of etching pits. A 2% relative increase of the solar cell efficiency was obtained for the best glass sample for null degree angle of incidence, proving enhanced light trapping properties of the studied glass.  相似文献   

20.
Laser irradiation of glass materials has drawn much attention because this technique can offer a new processing method for spatially selected structural modification and/or crystallization in glass. Crystallized line and dot patterns at the micrometer scale were fabricated on the surface of Sm-doped sodium borate (Na2O-B2O3) glass by irradiation of a continuous-wave Nd:YAG laser at λ = 1064 nm. The pattern sizes could be controlled by adjusting such parameters as scan rate, exposure time, and laser power. Analyses by Raman spectroscopy and X-ray diffraction revealed that the crystalline phase is Na3Sm2(BO3)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号