首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
X-ray diffraction studies of Eu2(MoO4)3 single crystals were performed, which demonstrate that, in contrast to polycrystalline samples, these crystals do not exhibit amorphous-like diffraction patterns during the reverse transition from the high-pressure phase into the initial β phase; rather, the diffracted intensity in their diffraction patterns decreases significantly to the background. Such a diffraction pattern can be explained under the assumption that a single crystal is divided into small (nanoscopic) regions inside which the lattice parameters of the high-pressure phase and the initial β phase change continuously. The simultaneous recovery of the single-crystal state of the β phase from this intermediate state in all nanoscopic regions as the annealing temperature increases indicates that nanocrystals in this state are structurally correlated with each other. This result suggests that the halo-type diffraction patterns of polycrystalline samples reflect an intermediate state between the high-pressure phase and the β phase in every initial crystallite (as in the single crystals) rather than being caused by an amorphous structure of the sample. In this case, the total diffraction pattern of differently oriented crystallites gives an amorphous-like diffraction pattern reflecting the contributions from numerous various crystallographic planes involved in diffraction.  相似文献   

2.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

3.
The thermophysical properties of oxyfluoride (NH4)3NbOF6 were studied in detail over wide ranges of temperatures and pressures. At atmospheric pressure, a sequence of four structural phase transitions was established with the following changes in entropy: ΔS 1 = Rln 2.7, δS 2 = Rln38.3, ΔS 3 = 0.08R, and ΔS 4 = 0.17R. An external hydrostatic pressure was found to narrow the region of existence of the initial cubic phase. A triple point was detected in the p-T diagram; at a pressure above 0.07 GPa, the transition between the tetragonal and monoclinic phases occurs through a distorted high-pressure phase.  相似文献   

4.
The shear viscosity is measured under conditions of isochronous (linear) heating below the glass transition temperature of the Pd40Cu40P20 metallic glass, which is characterized by the polymorphic crystallization into the Pd2Cu2P tetragonal phase with a lower density than the initial glass. It is shown that the rate dependence of the shear viscosity can be interpreted as a result of the irreversible structural relaxation by analogy with the case of the previously studied metallic glasses despite the unusual ratio of the densities of the material in noncrystalline and crystalline states.  相似文献   

5.
For over two decades, the high-temperature phase transition (HTPT) at around T p = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at T p. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO3), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO3. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below T p is also explained.  相似文献   

6.
We report a comparative Raman study of 0.65(PbMg1/3Nb2/3O3)-0.35(PbTiO3) (PMN-0.35PT) single crystal and thin film. Raman spectra investigation indicates a change in bulk from the high temperature cubic to the tetragonal phase and then to the low temperature Mc monoclinic phase. The transition temperatures are in good agreement with the ones previously observed by dielectric measurements on the same sample. In contrast, we observe no phase transition to the monoclinic phase in the PMN-0.35PT 4000 Å thick film and only a cubic to tetragonal diffuse transition has been determined at high temperature. The enhanced stability of the tetragonal phase and the absence of low temperature monoclinic phase have been attributed to the in plane strain.  相似文献   

7.
This paper reports on the results of acoustic investigations of a NaBi(MoO4)2 crystal in the temperature range from 20 to 70°C. The temperature dependences of the velocity of longitudinal ultrasonic waves propagating along the crystallographic axes z and x are measured at a frequency of 4 MHz. The results obtained demonstrate that a structural phase transition occurs in the NaBi(MoO4)2 crystal at a temperature of 309 K. The experimental findings are consistent with the assumption that the observed phase transition is either a second-order ferroelastic transition or a first-order ferroelastic transition that is very close to being a second-order phase transition.  相似文献   

8.
A structural model of the cubic paraelectric phase of a Fe3B7O13Br crystal belonging to the boracite family has been developed using the data obtained by single-crystal X-ray diffraction with due regard for the results of extended X-ray absorption fine structure (EXAFS) spectroscopy. It has been shown that the best agreement between the data obtained by these two methods is achieved within a model assuming a disorder in the arrangement of both the Fe and Br atoms and a high degree of correlation of their displacements. It has been found that, during the phase transition from the rhombohedral ferroelectric phase to the cubic paraelectric phase, no significant transformation of the structure is observed on a local level. In this case, a change in the macroscopic symmetry occurs predominantly as a result of the variation in the set of possible spatial orientations of stable structural fragments, which is characteristic of order-disorder phase transitions.  相似文献   

9.
Electrical transport and structural characterizations of isoelectronically substituted Ba(Fe0.9Ru0.1)2As2 have been performed as a function of pressure up to ~ 30 GPa and temperature down to ~ 10 K using designer diamond anvil cell. Similar to undoped members of the AFe2As2 (A = Ca, Sr, Ba) family, Ba(Fe0.9Ru0.1)2As2 shows anomalous a-lattice parameter expansion with increasing pressure and a concurrent ThCr2Si2 type isostructural (I4/mmm) phase transition from tetragonal (T) phase to a collapsed tetragonal (cT) phase occurring between 12 and 17 GPa where the a is maximum. Above 17 GPa, the material remains in the cT phase up to 30 GPa at 200 K. The resistance measurements show evidence of pressure-induced zero resistance that may be indicative of high-temperature superconductivity for pressures above 3.9 GPa. The onset of the resistive transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above ~ 10.6 GPa near the T-cT transition. We have determined the crystal structure of the high-T c phase of Ru-doped BaFe2As2 to remain as tetragonal (I4/mmm) by analyzing the X-ray diffraction pattern obtained at 10 K and 9.7 ± 0.7 GPa, as opposed to inferring the structural transition from electrical resistance measurement, as in a previous report [S.K. Kim, M.S. Torikachvili, E. Colombier, A. Thaler, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 84, 134525 (2011)].  相似文献   

10.
The influence of high-pressure hydrostatic compression and subsequent annealing on the structural properties of β’-phase single crystals of europium molybd ate was studied by IR spectroscopy and X-ray diffraction. It was demonstrated that after compression, the IR spectra exhibit drastic changes and do not depend on the initial crystallographic orientation of a single crystal. The high-pressure compression of single crystals followed by their annealing was found to result in the formation of β’-Eu2(MoO4)3 single crystals with the same crystallographic orientation as that of the initial samples.  相似文献   

11.
The monoclinic (space group C2/m) superstructure of the suboxide V14O6, which is formed as a result of the atomic and vacancy ordering of the tetragonal solid solution of oxygen in vanadium, is investigated using X-ray diffraction and symmetry analysis. The monoclinic suboxide V14O6 is observed in the vanadium oxide samples VO0.57, VO0.81, and VO0.86 synthesized at 1770 K and the samples VO y (0.87 ≤ y ≤ 0.98) additionally annealed at 1470 K after the synthesis. It is established that the channel of the disorder-order phase transition associated with the formation of the monoclinic suboxide V14O6 includes six superstructure vectors belonging to three non-Lifshitz stars of one type {k 1}. The distribution function of the oxygen atoms in the monoclinic superstructure of the suboxide V14O6 is calculated. It is demonstrated that the displacements of vanadium atoms distort the body-centered tetragonal metal sublattice, thus preparing the formation of the facecentered cubic sublattice and the transition from the suboxide V14O6 to the cubic vanadium monoxide with the B1 structure.  相似文献   

12.
The local structure of the ferroelectric-relaxor PbSc1/2Nb1/2O3 in the temperature range from 550 to 220 K has been investigated using 45Sc nuclear magnetic resonance. It has been found that, in the paraelectric phase at temperatures below 550 K, the crystal consists of regions of an ordered elpasolite structure and inclusions of the disordered tetragonal perovskite phase with displacements along directions of the [001] type. The relative weight of the tetragonal structure in the region of the paraelectric phase is approximately equal to 0.28. Below the temperature of the phase transition from the disordered modification to the polar phase, the relative weight of the tetragonal phase decreases with decreasing temperature. The tetragonal structure is replaced by the trigonal polar structure. In a wide temperature range (∼50 K), there exists a heterophase structure that is characteristic of relaxors. Note that the correlation length of displacements in the tetragonal phase should be very small to explain the absence of indications of the existence of this phase in the diffraction data.  相似文献   

13.
Epitaxial BaFe1.8Cr0.2As2 thin films with the tetragonal c-axis perpendicular to the thin film surface were grown on (LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) single crystalline substrates using pulsed laser deposition (PLD). Resistive measurements indicate the existence of two transitions at temperatures of about 80 K and 40 K. The transition at 80 K is attributed to the structural transition from the high temperature tetragonal phase to the low temperature orthorhombic phase accompanied with the magnetic transition from a paramagnetic to an antiferromagnetic state as known for doped bulk systems. Below T ≈ 40 K the magnetization curves measured perpendicularly to the orthorhombic c-axis in fields up to 9 Tesla show two inflexion points indicating metamagnetic transitions.  相似文献   

14.
The crystal structure of lead titanate PbTiO3 was investigated by energy dispersive X-ray diffraction at high pressures up to 4 GPa in a temperature range of 300–950 K. At the ambient conditions, the PbTiO3 structure is tetragonal with the space group P4mm (ferroelectric phase). A structural phase transition into the cubic phase with a space group Pm[`3]mPm\bar 3m is observed at T = 747 K. It was found that the phase transition temperature decreases upon applying the high pressure with the coefficient dT C /dP = -65 K/GPa. Dependences of parameters and volume of the unit cell on the pressure and temperature was found, and the bulk modulus and thermal expansion coefficients for the tetragonal and cubic phases of lead titanate have been calculated.  相似文献   

15.
The physical and structural properties of Fe1.11Te and Fe1.11Te0.5Se0.5 have been investigated by means of X-ray and neutron diffraction as well as physical property measurements. For the Fe1.11Te compound, the structure distortion from a tetragonal to monoclinic phase takes place at 64 K accompanied with the onset of antiferromagnetic order upon cooling. The magnetic structure of the monoclinic phase was confirmed to be of antiferromagnetic configuration with a propagation vector k = (1/2, 0, 1/2) based on Rietveld refinement of neutron powder diffraction data. The structural/magnetic transitions are also clearly visible in magnetic, electronic and thermodynamic measurements. For superconducting Fe1.11Te0.5Se0.5 compound, the superconducting transition with T c = 13.4 K is observed in the resistivity and ac susceptibility measurements. The upper critical field H c2 is obtained by measuring the resistivity under different magnetic fields. The Kim’s critical state model is adopted to analyze the temperature dependence of the ac susceptibility and the intergranular critical current density is calculated as a function of both field amplitude and temperature. Neutron diffraction results show that Fe1.11Te0.5Se0.5 crystalizes in tetragonal structure at 300 K as in the parent compound Fe1.11Te and no structural distortion is detected upon cooling to 2 K. However an anisotropic thermal expansion anomaly is observed around 100 K.  相似文献   

16.
The specific features of a phase transition from a disordered orbital state to an ordered orbital state in an La0.875Sr0.125MnO3 single crystal are investigated using acoustic methods at a frequency f = 500 MHz. The phase transition is accompanied by a distortion of MnO6 octahedra due to the cooperative Jahn-Teller effect and is a first-order phase transition, as judged from the sharp change observed in the damping of acoustic pulses, the acoustic wave velocity, and the temperature hysteresis. It is revealed that the parameters of the acoustic waves change significantly throughout the temperature range of existence of the cooperatively distorted structure. In an external magnetic field, the structural phase transition is shifted toward lower temperatures.  相似文献   

17.
Solid solution Sr0.5Ba0.5Nb2O6 films have been synthesized on a (111)Pt/(001)Si substrate by rf deposition in an oxygen atmosphere. The depolarized Raman spectra, the structure, and the dielectric characteristics of the films have been studied over a wide temperature range. It is found that the films were singlephase, had the tetragonal tungsten bronze structure, and had a pronounced axial texture with axis 001 directed perpendicular to the substrate surface. It is shown that the film material undergoes a diffuse phase transition to the state of a relaxor ferroelectric in the temperature range 300–425 K. Possible reasons of the regularities observed are discussed.  相似文献   

18.
Polycrystalline samples of SrFe2/3W1/3O3 (SFWO) ceramic were obtained by solid-phase reactions with subsequent sintering using conventional ceramic technology. X-ray diffraction analysis showed that at room temperature, the SFWO ceramic is single-phase and has a perovskite-type structure with tetragonal symmetry and parameters a = 3.941(9) Å, c = 3.955(6) Å, and c/a = 1.0035. In studying the magnetic properties and the Mössbauer effect in SFWO ceramics, it is found that the material is a ferrimagnet, and the iron ions are only in the valence state of Fe3+. It is suggested that in the temperature range of T = 150–210°C, a smeared phase transition from a cubic (paraelectric) phase to a tetragonal (ferroelectric) phase takes place in SFWO with decreasing temperature.  相似文献   

19.
The thermal and dielectric properties of the (NH4)2NbOF5 oxyfluoride have been investigated. It has been established that the structural phase transitions Cmc21C2 → Ia observed at the temperatures T 1 = 258.0 K and T 2 = 218.9 K exhibit a nonferroelectric nature. The hydrostatic pressure, which stabilizes the initial phase and destabilizes the low-temperature phase, hardly affects the temperature range of stability of the intermediate phase. The model of sequential ordering of the structural elements due to phase transitions has been analyzed using experimental data on the entropies of the phase transitions.  相似文献   

20.
New data on the specific heat, thermal expansion, and magnetization of the CaMn7O12 phase require a revision of the current concepts of the sequence of phase transitions in this compound. It is found that a spin-glass phase transition occurs in CaMn7O12 at T M = 49 K, whereas the transition at T S = 89 K exhibits the features of a first-order phase transition and thereby is apparently of structural origin. In the range T M < T< T S , the CaMn7O12 compound exhibits negative thermal expansion, which is also indicative of structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号