首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
A theoretical study of the electron dynamics in image potential states on Cu(1 0 0) surfaces with different types of adsorbates is presented. Scattering of the image state electron by an adsorbate induces inter-band and intra-band transitions leading respectively to the population decay and to the dephasing of the image state. We compare results obtained with low coverage (typically 1 adsorbate atom per 1000 surface atoms) Cs, Ar, and a model electronegative adsorbates. As follows from our results, Cs adsorbates lead to both appreciable dephasing and decay, while electronegative adsorbates mostly affect the dephasing rate. The effect of low coverage Ar adsorbates is small, consistent with their neutrality.  相似文献   

2.
The Cs/Cu(1 1 1) and Na/Cu(1 1 1) systems exhibit a transient excited electronic state localized on the adsorbate. Photo-excitation of this state triggers a motion of the alkali adsorbate away from the surface, leading to vibrational excitation of the adsorbate and possibly to desorption. A theoretical study of these photo-induced processes in the case of an exciting fs laser pulse is reported, based on a time-dependent approach of the adsorbate motion. The mean energy transfer from the laser photon energy to the adsorbate motion is shown to be weak, about 1% of the photon energy. Correspondingly, the vibrational excitation to high lying levels is very weak as well as the desorption process. The initial electronic state of the photo-induced process belongs to a continuum and vibrational excitation and desorption are found to vary rapidly with the energy of the initial electronic state. Initial vibrational excitation of the alkali adsorbate is also found to efficiently favour the desorption process, leading to a drastic variation of the desorption probability with the vibrational temperature of the adsorbate. The present results for the two systems are discussed and compared, in connection with available experimental data on these systems and on similar ones.  相似文献   

3.
J. Hager 《Surface science》2006,600(5):1129-1133
The electromagnetic field relevant for the excitation process in angle-resolved photoemission is studied. We show that Fresnel’s equations together with the known bulk dielectric constants can be used to calculate the complex vector potential at the metal surface. A model is developed which accounts correctly for the special experimental geometry with focused light. It is used to calculate the variation of photoemission intensity with changing light incidence angle and polarization. Experimental data for the photoemission intensity as a function of light incidence angle are presented for direct transitions out of bulk, surface and adsorbate states at a Cu(1 1 0) surface. The comparison to our model shows that the application of copper bulk optical constants is justified even when electronic states are localized to the topmost atomic layer.  相似文献   

4.
2 overlayers adsorbed on Cu(111). With increasing number of adsorbate layers the binding energies of the image potential states are found to decrease while their lifetimes increase (except for the second image potential state on 2 to 3 ML Xe/Cu(111)). These trends are most pronounced for nitrogen, where the binding energy of the first image potential state decreases by a factor of 3.5 from 0 to 2 ML N2/Cu(111); at the same time the lifetime increases from 22 to 700 fs. The results are discussed in the framework of the dielectric continuum model, which approximates the adsorbate layers by a dielectric slab in front of the metal surface. For Xe, the agreement between measured and calculated lifetimes improves significantly if the full dispersion curve of the Xe 6s conduction band is taken into account. Received: 2 November 1998  相似文献   

5.
Photochemistry involving adsorbates on metals often proceeds by photoexcitation of the metal followed by transient attachment of photoemitted electrons to the adsorbate. First principles theoretical methods suitable for describing electronic states embedded in a near continuum of metal to metal excitations are described and an application to electron attachment to CO2 adsorbed on Pt(1 1 1) is reported. Wavefunctions are constructed by ab initio configuration interaction methods which allow a rigorous resolution of states and differentiation between competing pathways of molecular desorption and dissociation. An embedding theory is used to achieve high accuracy in the adsorbate-surface region. The energy required to form the electron attached state is 5.2 eV for excitation to bent CO2 and 6.8 eV for excitation to linear CO2, hence both energies are near the work function of the metal (5.7 eV). The process also involves localization of the metal hole and attraction of the charged adsorbate to the metal. Optimum geometries are calculated and pathways that results in desorption, dissociation by bond rupture directly in the excited electronic state, or dissociation after return to the ground state potential energy surface via vibrational processes are explored.  相似文献   

6.
The adsorption of 1,3,5,7-cyclooctatetraene (COT) on Ru(0 0 1) is studied by temperature-programmed desorption (TPD), work function measurements, as well as time- and angle-resolved two-photon photoemission (2PPE) spectroscopy. The TPD data show that COT films grow at 115 K in a metastable phase when the coverage is increased from the chemisorbed monolayer to the bulk-like molecular multilayer structure. The metastable states desorb at a temperature which is ≈9 K lower than the desorption temperature of the stable multilayer. At 165 ± 2 K, they undergo an irreversible and thermally activated transformation into the stable multilayer phase. This transition is accompanied by a pronounced increase in the total 2PPE yield by more than one order of magnitude as well as the appearance of image potential states. The image states have binding energies of −0.70 eV and −0.24 eV for the n = 1 and n = 2 states, respectively, and a lifetime of 20 ± 5 fs for both states. Their appearance is interpreted as an indication of island formation in the stable multilayer regime. 2PPE spectroscopy of the image potential states provides a sensitive probe of structural transitions in the adsorbate layers.  相似文献   

7.
A theoretical study of the effect of an atomically thin rare gas layer on the dynamics of excited electronic states at metal surfaces is presented for the case of a few mono-layers of Ar on a Cu(1 0 0) surface. We develop a 3D-microscopic model with predictive capabilities of the interaction of an electron with an Ar layer physisorbed on a metal surface. It takes into account the 3D structure of the Ar layer as well as its dielectric character. The dynamics of the excited electron on the surface is treated within a wave-packet propagation approach. The calculations show that two different types of excited states are present at the Ar/Cu(1 0 0) surface. (i) Image states that are repelled into vacuum as compared to their position on clean Cu(1 0 0) surfaces, leading to a decrease of their binding energies and to an increase of their lifetimes. (ii) Quantum-well resonances, corresponding to quasi-stationary states localised inside the Ar layer; they are associated with the quantisation of the conduction band in the finite size Ar layer. The present results on image states nicely agree with very recent time-resolved two-photon-photo-emission experiments by Berthold, Feulner and Höfer.  相似文献   

8.
The adsorption behavior and thermal activation of carbon dioxide on the Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0) surfaces have been investigated by means of density functional theory calculations and cluster models and periodic slabs. According to the cluster models, the optimized results indicate that the basis set of C and O atoms has a distinct effect on the adsorption energy, but an indistinct one on the equilibrium geometry. For the CO2/Cu(hkl) adsorption systems studied here, the final structure of adsorbed CO2 is near linear and the preferred modes for the adsorption of CO2 onto the Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0) surfaces are the side-on adsorption at the cross bridge site with an adsorption energy of 13.06 kJ/mol, the side-on adsorption at the short bridge site (13.54 kJ/mol), and the end-on adsorption on the on-top site with C–O bonds located along the short bridge site (26.01 kJ/mol), respectively. However, the calculated adsorption energies from periodic slabs are lower as compared to the experimental data as well as the cluster model data, indicating that the periodic slab approach of generalized gradient approximation in the density function theory may be not suitable to obtain quantitative information on the interaction of CO2 with Cu(hkl) surfaces.  相似文献   

9.
Diffusion length of Ga on the GaAs(0 0 1)-(2×4)β2 is investigated by a newly developed Monte Carlo-based computational method. The new computational method incorporates chemical potential of Ga in the vapor phase and Ga migration potential on the reconstructed surface obtained by ab initio calculations; therefore we can investigate the adsorption, diffusion and desorption kinetics of adsorbate atoms on the surface. The calculated results imply that Ga diffusion length before desorption decreases exponentially with temperature because Ga surface lifetime decreases exponentially. Furthermore, Ga diffusion length L along and [1 1 0] on the GaAs(0 0 1)-(2×4)β2 are estimated to be and L[110]200 nm, respectively, at the incorporation–desorption transition temperature (T860 K).  相似文献   

10.
The process of electron stimulated desorption of adsorbates from metal surfaces is investigated within the framework of quantum mechanical scattering theory. The Born-Oppenheimer adiabatic approximation is assumed to be valid for the adsorbate motion. The transition amplitude for desorption via the resonant excitation of excited states of the adsorbate then can be factorized into an electronic excitation amplitude and a Franck-Condon factor. The Franck-Condon factor is more complicated than in molecules. The continuum of substrate excitations coupling to the adsorbate gives rise to an absorptive part of the Born-Oppenheimer potential governing the motion of the adsorbate in the excited state. This absorptive part leads to a considerable reduction of the desorption cross section. Explicit quantum mechanical expressions for the corresponding reduction factor are given.The desorption of neutrals is considered in some detail. It turns out that within the adiabatic approximation this process requires the existence of neutral excited states of the adsorbate. The reneutralization of ionic excited states by electron capture from the substrate back into the ground state of the adsorbate, while possible on purely energetical grounds, occurs with zero probability in the adiabatic approximation and thus cannot be responsible for the large abundance of neutral desorbing particles. Neutral excited states of the adsorbate in principle should show up in inelastic electron scattering. The relation between electron stimulated desorption cross sections and inelastic electron scattering cross sections is discussed briefly.On leave of absence from (present address) Physikdepartment der TUM, München-Garching and Max-Planck-Institut für Festkörperforschung, Stuttgart  相似文献   

11.
The process of electron stimulated desorption of adsorbates from metal surfaces is investigated within the framework of quantum mechanical scattering theory. The Born-Oppenheimer adiabatic approximation is assumed to be valid for the adsorbate motion. The transition amplitude for desorption via the resonant excitation of excited states of the adsorbate then can be factorized into an electronic excitation amplitude and a Franck-Condon factor. The Franck-Condon factor is more complicated than in molecules. The continuum of substrate excitations coupling to the adsorbate gives rise to an absorptive part of the Born-Oppenheimer potential governing the motion of the adsorbate in the excited state. This absorptive part leads to a considerable reduction of the desorption cross section. Explicit quantum mechanical expressions for the corresponding reduction factor are given.The desorption of neutrals is considered in some detail. It turns out that within the adiabatic approximation this process requires the existence of neutral excited states of the adsorbate. The reneutralization of ionic excited states by electron capture from the substrate back into the ground state of the adsorbate, while possible on purely energetical grounds, occurs with zero probability in the adiabatic approximation and thus cannot be responsible for the large abundance of neutral desorbing particles. Neutral excited states of the adsorbate in principle should show up in inelastic electron scattering. The relation between electron stimulated desorption cross sections and inelastic electron scattering cross sections is discussed briefly.  相似文献   

12.
sp-Like quantum-well states (QWS) in thin monocrystalline bilayer films of Ag and Au on W(1 1 0) and of single Ag films were studied by angle-resolved photoemission. We find that the propagation of the electronic states in the bilayer films along [1 1 1] depends on the energy relative to the band edge of Au metal at the L point of the Brillouin zone. In particular, QWS with binding energies less than this band-edge energy (1.1 eV) are strongly confined to the Ag layer, while for higher binding energies the QWS extend across the whole bilayer film. This clearly demonstrates the weakness of the potential barrier at the Ag/Au interface in the context of QWS formation at energies where electronic states exist in both metals.  相似文献   

13.
Summary In this work, classical nonlinear dynamical methods are used to study photodesorption induced by IR-laser resonant excitation of an internal vibrational mode of a physisorbed molecule. Starting from the large disagreement between the experimental values of the photodesorption rates and the theoretical quantum perturbative ones for CH3F/NaCl, the Elastic-Resonant-State Decay (ERSD) model is analysed focusing attention on the nonexponential time decay behaviour of the survival probability of the system, that shows two different time scales. This is obtained by a suitable average of classical trajectories calculated by integrating Hamilton’s equations of motion. The Poincaré sections are used to clarify the details of the microscopic dynamics of the IR-photodesorption, pointing out the dynamical role of cantori as responsible for desorption occurring on a longer time scale. A method to build up the separatrix for the ERSD system is proposed, stressing that such a separatrix acts as a bottleneck against the energy flux exchanged between the physisorption and the intramolecular bond of the adsorbate. A calculation of the photodesorption rate when a condition of fast relaxation between the two bonds is verified, is performed using the Transport Theory in Hamiltonian System. The values of the photodesorption rate obtained by this approach are in good agreement with those obtained by integrating numerically the equations of motion.  相似文献   

14.
The Li and Cs alkali-adsorbate-induced states on a model Cu(111) surface are studied theoretically using the coupled angular mode and the wave packet propagation methods. Their energy position and their decay rate via one-electron transfer into the metal are calculated. An unoccupied alkali-induced state is found with a rather long lifetime, much longer than those found in the case of free-electron metal surfaces. This is attributed to the combined effect of the hybridisation of the alkali levels and of the Cu(111) projected band gap along the normal to the surface that blocks the electron transfer between the adsorbate and the metal. This qualitatively explains the experimental finding of a long-lived state by Bauer et al. [Phys. Rev. B 55 (1997) 10 040] and Ogawa et al. [Phys. Rev. Lett. 82 (1999) 1931].  相似文献   

15.
K. Fukutani  Y. Murata 《Surface science》1997,390(1-3):164-173
Photoexcited processes of NO and CO at photon energies ranging from 2.3 to 6.4 eV are investigated on Pt(111), Ni(111) and Pt(111)---Ge surface alloys by reflection-absorption infrared spectroscopy and resonance-enhanced multiphoton ionization. The branching between three competitive processes of desorption, recapture and dissociation upon laser irradiation is dramatically changed on the three surfaces. On Pt(111), NO is either photodesorbed or photodissociated depending on the coverage, while NO is exclusively photodissociated on Ni(111). UV-photon irradiation of NO on Pt(111)---Ge, on the other hand, induces only desorption of NO. Desorption of CO bound at the on-top site of Pt(111) is induced by laser irradiation. The electronic mechanism for photodesorption and competitive branching is discussed in terms of the electronic structure of the substrate and the adsorbate.  相似文献   

16.
Having performed the first three-dimensional ab initio quantum dynamical study of photodesorption from solid surfaces, we gained mechanistic understanding of the rotational alignment observed in the CO/Cr(2)O(3)(0001) system. Our study is based on potential energy surfaces obtained by embedded cluster calculations for both the electronic ground and excited state of the adsorbate substrate complex. Stochastic wave packet calculations demonstrate the importance of the angular degrees of freedom for the microscopic picture of the desorption process in addition to the desorption coordinate.  相似文献   

17.
The possibility of the desorption of complicated molecular complexes by soft X rays resulting from a solid target irradiated by a single sharply focused femtosecond laser pulse with an energy of several millijoules has been experimentally demonstrated for polyaniline, which is an organic conducting polymer. X-ray desorption and photodesorption of polyaniline by femtosecond laser pulses have been compared using a time-of-flight mass spectrometer. The results provide the possibility of studying surfaces with spatial nanoresolution and high elemental (chemical) selectivity, as well as observing the photodesorption with a high temporal resolution.  相似文献   

18.
A model calculation is presented for the photo-stimulated desorption of molecules adsorbed on a metal surface. In the model, the electronic system of the material consists of two energy bands which are described by a tight binding Hamiltonian. The total energy of the electronic system is assumed to give the potential energy for the molecular motion. The time development of the total wavefunction including one coordinate of the molecular center-of-mass and those of electrons is calculated in order to see the relation between the electronic transition by light irradiation and the transition of the state for the molecular motion explicitly. The magnitude of the photodesorption probability calculated for NO/Cu(111) is comparable to that deduced from experimental results.  相似文献   

19.
Adsorption and desorption of methanol on a CeO2(1 1 1)/Cu(1 1 1) thin film surface was investigated by XPS and soft X-ray synchrotron radiation PES. Resonance PES was used to determine the occupancy of the Ce 4f states with high sensitivity. Methanol adsorbed at 110 K formed adsorbate multilayers, which were partially desorbed at 140 K. Low temperature desorption was accompanied by formation of chemisorbed methoxy groups. Methanol strongly reduced cerium oxide by forming hydroxyl groups at first, which with increasing temperature was followed by creation of oxygen vacancies in the topmost cerium oxide layer due to water desorption. Dissociative methanol adsorption and creation of oxygen vacancies was observed as a Ce4+ → Ce3+ transition and an increase of the Ce 4f electronic state occupancy.  相似文献   

20.
The ultraviolet photochemistry of molecules adsorbed on metallic surfaces has been studied using excimer lasers as radiation source. Dissociation with the fragments either ejected into the gas phase or retained on the surface is one prominent channel. The other is photodesorption of intact molecules. The desorbing molecules are characterized by time-of-flight mass spectroscopy and laser spectroscopy. The state of the adsorbate after irradiation is characterized by thermal desorption spectroscopy and high resolution electron energy loss spectroscopy. The methods and fundamental characteristics are exemplified using results from three studied systems: O2, H2O, and N2O4 adsorbed on Pd(111).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号