首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this paper, the global asymptotic stability of impulsive stochastic Cohen–Grossberg neural networks with mixed delays is investigated by using Lyapunov–Krasovskii functional method and the linear matrix inequality (LMI) technique. The mixed time delays comprise both the multiple time-varying and continuously distributed delays. Some new sufficient conditions are obtained to guarantee the global asymptotic stability of the addressed model in the stochastic sense using the powerful MATLAB LMI toolbox. The results extend and improve the earlier publications. Two numerical examples are given to illustrate the effectiveness of our results.  相似文献   

2.
In this paper, the problems of determining the global exponential stability and estimating the exponential convergence rate are investigated for a class of neural networks with mixed discrete and distributed time-varying delays. By employing a new Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is exploited to establish sufficient easy-to-test conditions for the neural networks to be globally exponentially stable, which can be readily solved by using the numerically efficient Matlab LMI toolbox. Three numerical examples are provided to demonstrate the effectiveness of the proposed results.  相似文献   

3.
This paper deals with the problem of global exponential stability for a general class of stochastic high-order neural networks with mixed time delays and Markovian jumping parameters. The mixed time delays under consideration comprise both discrete time-varying delays and distributed time-delays. The main purpose of this paper is to establish easily verifiable conditions under which the delayed high-order stochastic jumping neural network is exponentially stable in the mean square in the presence of both mixed time delays and Markovian switching. By employing a new Lyapunov–Krasovskii functional and conducting stochastic analysis, a linear matrix inequality (LMI) approach is developed to derive the criteria ensuring exponential stability. Furthermore, the criteria are dependent on both the discrete time-delay and distributed time-delay, and hence less conservative. The proposed criteria can be readily checked by using some standard numerical packages such as the Matlab LMI Toolbox. A simple example is provided to demonstrate the effectiveness and applicability of the proposed testing criteria.  相似文献   

4.
The paper is concerned with the problem of robust asymptotic stability analysis of stochastic Cohen–Grossberg neural networks with discrete and distributed time-varying delays. Based on the Lyapunov stability theory and linear matrix inequality (LMI) technology, some sufficient conditions are derived to ensure the global robust convergence of the equilibrium point. The proposed conditions can be checked easily by LMI Control Toolbox in Matlab. Furthermore, all the results are obtained under mild conditions, assuming neither differentiability nor strict monotonicity for activation function. A numerical example is given to demonstrate the effectiveness of our results.  相似文献   

5.
This paper is concerned with global asymptotic stability of a class of reaction-diffusion stochastic Bi-directional Associative Memory (BAM) neural networks with discrete and distributed delays. Based on suitable assumptions, we apply the linear matrix inequality (LMI) method to propose some new sufficient stability conditions for reaction-diffusion stochastic BAM neural networks with discrete and distributed delays. The obtained results are easy to check and improve upon the existing stability results. An example is also given to demonstrate the effectiveness of the obtained results.  相似文献   

6.
7.
In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the stability analysis for stochastic cellular neural networks with multiple discrete and distributed time varying delays. A novel linear matrix inequality (LMI) based stability criterion is derived to guarantee the asymptotic stability of stochastic cellular neural networks with multiple discrete and distributed time varying delays which are represented by T–S fuzzy models. The derived delay-dependent stability conditions are based on free-weighting matrices method, Lyapunov stability theory and LMI technique. In fact, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. The delay-dependent stability condition is formulated, in which the restriction of the derivative of the time-varying delay is removed. Our results can be specialized to several cases including those studied extensively in the literature. Finally, numerical examples are given to demonstrate the effectiveness and conservativeness of our results.  相似文献   

8.
In this paper, the global asymptotic stability problem of Takagi–Sugeno (TS) fuzzy Cohen–Grossberg Bidirectional Associative Memory neural networks (FCGBAMNNs) with discrete and distributed time-varying delays is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of FCGBAMNNs which are represented by TS fuzzy models. Our results can be easily verified and are also less restrictive than previously known criteria and can be applied to Cohen–Grossberg neural networks, recurrent neural networks and cellular neural networks. Finally, the proposed stability conditions are demonstrated with a numerical example.  相似文献   

9.
In this paper, the dynamic analysis problem is considered for a new class of Markovian jumping impulsive stochastic Cohen–Grossberg neural networks (CGNNs) with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belonging to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the Lyapunov–Krasovskii functional and stochastic stability theory, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities. Some asymptotic stability criteria are formulated by means of the feasibility of a linear matrix inequality (LMI), which can be easily calculated by LMI Toolbox in Matlab. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some existing results in the literature.  相似文献   

10.
In this paper, a class of impulsive Cohen–Grossberg neural networks with time-varying delays and reaction–diffusion is formulated and investigated. By employing delay differential inequality and the linear matrix inequality (LMI) optimization approach, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive Cohen–Grossberg neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of Cohen–Grossberg neural networks. An example is given to show the effectiveness of the results obtained here.  相似文献   

11.
In this paper, the Cohen–Grossberg neural network model with both time-varying and continuously distributed delays is considered. Without assuming both global Lipschitz conditions on these activation functions and the differentiability on these time-varying delays, applying the idea of vector Lyapunov function, M-matrix theory and inequality technique, several new sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential stability of equilibrium point for Cohen–Grossberg neural network with both time-varying and continuously distributed delays. These results generalize and improve the earlier publications. Two numerical examples are given to show the effectiveness of the obtained results. It is believed that these results are significant and useful for the design and applications of the Cohen–Grossberg neural networks.  相似文献   

12.
In this paper, the global exponential stability and asymptotic stability of retarded functional differential equations with multiple time-varying delays are studied by employing several Lyapunov functionals. A number of sufficient conditions for these types of stability are presented. Our results show that these conditions are milder and more general than previously known criteria, and can be applied to neural networks with a broad range of activation functions assuming neither differentiability nor strict monotonicity. Furthermore, the results obtained for neural networks with time-varying delays do not assume symmetry of the connection matrix.  相似文献   

13.
In this paper, the global robust exponential stability for a class of delayed BAM neural networks with norm-bounded uncertainty is studied. Some less conservative conditions are presented for the global exponential stability of BAM neural networks with time-varying delays by constructing a new class of Lyapunov functionals combined with free-weighting matrices. This novel approach, based on the linear matrix inequality (LMI) technique, removes some existing restrictions on the system’s parameters, and the derived conditions are easy to verify via the LMI toolbox. Comparisons between our results and previous results admit that our results establish a new set of stability criteria for delayed BAM neural networks.  相似文献   

14.
This paper considers the chaotic synchronization problem of neural networks with time-varying and distributed delays using impulsive control method. By utilizing the stability theory for impulsive functional differential equations, several impulsive control laws are derived to guarantee the exponential synchronization of neural networks with time-varying and distributed delays. It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers. Moreover, these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. Finally, a numerical example and its simulation are given to show the effectiveness and advantage of the proposed control schemes.  相似文献   

15.
In this paper, the global exponential stability for neutral-type impulsive neural networks with discrete and distributed delays is established by utilizing the Lyapunov–Krasovskii functional combining with the linear matrix inequality(LMI) approach.  相似文献   

16.
In this paper,we prove the existence and the global exponential stability of the unique weighted pseudo almost-periodic solution of shunting inhibitory cellular neural networks with mixed time-varying delays comprising different discrete and distributed time delays.Some sufficient conditions are given for the existence and the global exponential stability of the weighted pseudo almost-periodic solution by employing fixed point theorem and differential inequality techniques.The results of this paper complement the previously known ones.Finally,an illustrative example is given to demonstrate the effectiveness of our results.  相似文献   

17.
In this paper, some sufficient conditions for global robust exponential stability of interval neural networks with time-varying delays are presented. It is shown that our results include some counterparts of the previous literatures. On basis of the obtained results, some linear matrix inequality (LMI) criteria are derived. Moreover, three numerical examples and a simulation are given to show the effectiveness of the obtained results.  相似文献   

18.
This paper studies scale-type stability for neural networks with unbounded time-varying delays and Lipschitz continuous activation functions. Several sufficient conditions for the global exponential stability and global asymptotic stability of such neural networks on time scales are derived. The new results can extend the existing relevant stability results in the previous literatures to cover some general neural networks.  相似文献   

19.
In this article, a class of bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time delay in the leakage term, discrete and unbounded distributed delays is formulated to study the global asymptotic stability. This approach is based on the Lyapunov–Krasovskii functional with free-weighting matrices. Using linear matrix inequality (LMI), a new set of stability criteria for BAM FCNNs with time delay in the leakage term, discrete and unbounded distributed delays is obtained. Also, the stability behavior of BAM FCNNs is very sensitive to the time delay in the leakage term. In the absence of a leakage term, a new stability criteria is also derived by employing a Lyapunov–Krasovskii functional and using the LMI approach. Our results establish a new set of stability criteria for BAM FCNNs with discrete and unbounded distributed delays. Numerical examples are provided to illustrate the effectiveness of the developed techniques.  相似文献   

20.
In this paper, we investigate exponential stability for stochastic BAM networks with mixed delays. The mixed delays include discrete and distributed time-delays. The purpose of this paper is to establish some criteria to ensure the delayed stochastic BAM neural networks are exponential stable in the mean square. A sufficient condition is established by consructing suitable Lyapunov functionals. The condition is expressed in terms of the feasibility to a couple LMIs. Therefore, the exponential stability of the stochastic BAM networks with discrete and distributed delays can be easily checked by using the numerically efficient Matlab LMI toobox. A simple example is given to demonstrate the usefulness of the derived LMI-based stability conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号