首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrated strontium borate, SrB4O7·3H2O, has been synthesized and characterized by XRD, FT-IR, DTA-TG and chemical analysis. The molar enthalpy of solution of SrB4O7·3H2O in 1 mol dm−3 HCl(aq) was measured to be (21.15 ± 0.29) kJ mol−1. With incorporation of the previously determined enthalpies of solution of Sr(OH)2·8H2O(s) in [HCl(aq) + H3BO3(aq)] and H3BO3 in HCl(aq), and the enthalpies of formation of H2O(l), Sr(OH)2·8H2O(s) and H3BO3(s), the enthalpy of formation of SrB4O7·3H2O was found to be −(4286.7 ± 3.3) kJ mol−1.  相似文献   

2.
Low-temperature heat capacities of the complex Zn(Thr)SO4·H2O (s) have been precisely measured with a small sample adiabatic calorimeter over the temperature range from 78 to 373 K. The initial dehydration temperature of the complex (Td=325.50 K) has been obtained by analysis of the heat-capacity curve. The experimental values of molar heat capacities have been fitted to a polynomial equation by least square method. The standard molar enthalpy of formation of the complex has been determined from the enthalpies of dissolution (ΔdHmΘ) of [ZnSO4·7H2O (s) +Thr (s)] and Zn(Thr)SO4·H2O (s) in 100 ml of 2 mol dm−3 HCl solvent as: ΔfHm,Zn(Thr)SO4·H2OΘ=−2111.7±3.4 kJ mol−1. These experiments were made by using an isoperibol solution calorimeter at 298.15 K.  相似文献   

3.
Na2SeO4·H2SeO3H2O are transparent orthorhombic (class group mm2) crystals which exhibit interesting second order nonlinear optical properties in the blue region of the visible spectrum. We demonstrate here the efficient generation at λω=0.8716 μm of the second harmonic in a peculiar crystal configuration where type I phase matching occurs.  相似文献   

4.
Polarized absorption spectra of Ba(MnO4)2·3H2O/Ba(ClO4)2·3H2O mixed single crystals are reported at 4.2°K. Previous 1T21A1 assignments for the 5200 Å and 3000 Å absorption bands of MnO4 are substantiated; further support is provided for the 1T11A1 assignment of the 3600 Å absorption band of MnO4. The site-splitting of the 5200 Å 1T2 state is E(1E)−E(1A) ≈ −150 cm−1; that of the 3000 Å 1T2 state is E(1E)−E(1A) ≈ 300 cm−1. A significant e vibronic intensity component is observed in the 5200 Å 1T2 state.  相似文献   

5.
Hydroformylation of propylene has been carried out in supercritical CO2 + H2O and in supercritical propylene + H2O mixtures using Rh(acac)(CO)2 and triphenylphosphine trisulfonate trisodium salt (TPPTS), P(m-C6H4SO3Na)3, as catalyst. Visual observation of the reaction mixtures indicates that in both systems a single phase is present at supercritical temperatures and pressures so that the reaction occurs under homogeneous conditions. After reaction is complete, a biphasic system is formed when the pressure and temperature are reduced to ambient. This facilitates separation of the products in the organic phase and the rhodium catalyst in the aqueous phase. The rhodium concentration in the organic phase was found to be negligible (1.0 × 10−6 mg/ml). Furthermore, compared with traditional hydroformylation technology, the supercritical reactions also show better activity and selectivity.  相似文献   

6.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

7.
The infrared spectra of isotopically dilute (matrix-isolated HDO molecules) isostructural compounds M(HCOO)2·2H2O (M=Mn,Fe,Co,Ni,Zn,Cu) are presented and discussed in the region of the OD stretching modes. According to the structural data the compounds under study are divided into two groups: in M(HCOO)2·2H2O (M=Mn,Ni,Zn) the H2O(1) molecules form stronger hydrogen bonds as compared to H2O(2); in M(HCOO)2·2H2O (M=Fe,Co,Cu) the H2O(2) molecules form stronger hydrogen bonds as compared to the H2O(1) molecules. The influence of the metal–water interactions (synergetic effect) and the unit-cell volumes (repulsion potential of the lattice) on the hydrogen bond strength within the isostructural series is discussed. The wavenumbers of the uncoupled OD stretching modes of the HDO molecules influenced by guest ions (Cu2+ ions matrix-isolated in M(HCOO)2·2H2O and M2+ ions matrix-isolated in Cu(HCOO)2·2H2O) are presented and commented. For example, the analysis of the spectra reveals that when Cu2+ ions are included in the structure of M(HCOO)2·2H2O the hydrogen bonds of the type M–OH2OCHO–Cu are considerably weaker as compared to those of the same type formed when M2+ ions are included in the structure of Cu(HCOO)2·2H2O if the cations remain unchanged.  相似文献   

8.
The crystal structure of LaCl3·galactitol·6H2O has been determined. It is monoclinic. The space group is P21/n with unit cell dimensions a=10.5091(7), b=12.5366(7), c=14.4420(10) Å, β=90.974(2)°, V=1902.4(2) Å3 and Z=4. Each La3+ ion in the unit cell is coordinated to 10 oxygen atoms, three from O1, O2 and O3 of one alditol, three from O4, O5 and O6 of another alditol and four from water molecules, with La–O distances from 2.5099 to 2.6916 Å. The other two water molecules are hydrogen-bonded. FT-IR spectrum of LaCl3·galactitol·6H2O is apparently different from that of other lanthanide–galactitol complexes. It is consistent with the differences between their crystal structures. Both the IR result and the crystal structure of LaCl3·galactitol·6H2O complex show that it has the different coordination mode compared with other lanthanide complexes.  相似文献   

9.
Trichlorides of the lanthanide elements Ln=Ce–Lu form: (a) isotypic hexahydrates LnCl3·6H2O with a coordination number (CN) 8 for the Ln3+ ions. (b) Two isotypic groups of trihydrates LnCl3·3H2O, in the first group Ln=Ce-Dy the CN is 8; the structure of the second group Ln=Er–Lu is unknown. With Ho no trihydrate exists; a dihydrate is formed. (c) Two isotypic groups of monohydrates LnCl3·H2O with unknown structure – Ln=Ce–Dy and Ln=Ho–Lu. For all compounds and for anhydrous chlorides LnCl3 solution enthalpies were measured with an isoperibolic calorimeter. The ΔsolH0 values do not depend only on the difference (lattice enthalpies/hydration enthalpies), but also on the state in solution. According to Spedding the CN of the Ln3+ ions against water changes from 9 to 8 between Nd and Sm, causing minima in the series of solution enthalpies. Dihydrates LnCl3·2H2O are found for Ln=Ce, Pr, Nd, Sm and presumably for Eu and Gd. They are not yet well characterised.  相似文献   

10.
The crystal structure of NdCl3·C6H12O6·9H2O has been determined. It crystallizes in the monoclinic system, p2(1)/n space group with cell dimensions: a=15.824(3) Å, b=8.633(2) Å, c=16.219(3) Å, β=107.24°, V=2116.1(7) Å3 and Z=4. Each Nd ion is coordinated to nine oxygen atoms, two from inositol and seven from water molecules, with an Nd–O distance of 2.449–2.683 Å, the other two water molecules are hydrogen bonded. No direct contacts exist between Nd and Cl. There is an extensive network of hydrogen bonds in hydroxyl groups, water molecules and chloride ions in the crystal structure of the lanthanide complex. The Raman spectra of Pr–, Nd– and Sm–inositol are similar, which show that the three metal ions have the same coordination mode. The Raman spectra are consistent with their structures.  相似文献   

11.
Modification by using mechanochemical treatment of vanadium phosphate catalysts on the microstructure, morphology, oxygen nature and catalytic performance for n-butane oxidation is described and discussed. In this work, the precursor, VOHPO4·0.5H2O prepared by reduction of VOPO4·2H2O by isobutyl alcohol was subjected to a high energy planetary ball mill for 30, 60 and 120 min in ethanol. The ball milling process reduced the crystallite size of the catalysts and consequently increased their surface area. The morphologies of the milled catalysts are dependent on milling time. The highest reactivity and mobility of the lattice oxygen species has been achieved by the catalyst milled for 60 min with lower reduction peak temperature and higher amount of oxygen atoms removed. The oxygen species removed from the active V4+ phase was shown to be correlated with the rate of reaction. A good relationship was also found between the oxygen species associated with V5+ and maleic anhydride selectivity. However, a larger amount of this oxygen species will give a deleterious effect on the conversion rate. The present study demonstrate that the mechanochemical method (with an appropriate duration) effectively enhanced the catalytic activity by increasing the surface area and controlling the reactivity, and that the amount of oxygen species contributed to the partial oxidation of n-butane to maleic anhydride.  相似文献   

12.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

13.
This work reports the thermal dehydration of the oxocarbonic salt Li2C5O5·2H2O studied by IR and Raman spectroscopy, by ex situ and in situ techniques. The loss of the crystallization water is not only reflected by the disappearing of the pertinent bands, but also by the change in the crystalline phase, as evidenced by the alteration in the splitting pattern of the oxocarbon modes and by differential scanning calorimetry. In the anhydrous salt spectra, a great number of overtones and combination bands appear in the 2000–4000 cm−1 region, indicating an increased anharmonicity. The enhanced splitting suggests that the anhydrous phase belongs to a less symmetric unit cell. The tetrahedral environment around the lithium ion is preserved, as suggested by the shifts of some modes in the 300–600 cm−1 region on isotopic substitution from 7Li to 6Li. Raman and thermoanalytical data seem to indicate that the crystallization water is released in a single-step process.  相似文献   

14.
Manganese hydrogen phosphate monohydrate, MnHPO4·H2O, a new phase, is synthesized. Its solubility is investigated in the temperature range 35–50°C and pH range 3.4–7.5. Ksp, ΔH0, ΔS0 and ΔG0 for the dissolution are reported. The decrease in solubility with increase in pH is explained as due to a surface coating of insoluble basic phosphate.  相似文献   

15.
A new sodium cobalt carbonate hydroxide hydrate, Na2Co8(CO3)6(OH)6·6H2O, has been prepared at room temperature by treatment of Co(OH)NO3·H2O with a concentrated aqueous solution of NaHCO3. X-Ray powder diffractometry and the results of the chemical analyses show that the compound is isotypical to Na2Ni8(CO3)6(OH)6·6H2O —kambaldaite, a unique mineral with no known synthetic or natural analogues.  相似文献   

16.
A systematic investigation into the regioselective one-pot, three-component condensation of enaminones 1a–g, β-dicarbonyl compounds 2a–c, and ammonium acetate in the presence of a catalytic amount of K5CoW12O40·3H2O (0.01 equiv or 1.0 mol %) under solvent free conditions, as well as in refluxing isopropanol, has been reported. The reaction was highly efficient to produce 2,3,6-trisubstituted pyridines 3a–g, 4a–g, and novel 2,7,7-trisubstituted-5,6,7,8-tetrahydroquinoline-5-ones 5a–g in excellent yields. The present procedure offers advantages of short reaction time, simple work-up, and the catalyst exhibited remarkable reusable activity.  相似文献   

17.
The compound [Zn(H2O)4]2[H2As6V15O42(H2O)]·2H2O (1) has been synthesized and characterized by elemental analysis, IR, ESR, magnetic measurement, third-order nonlinear property study and single crystal X-ray diffraction analysis. The compound 1 crystallizes in trigonal space group R3, a=b=12.0601(17) Å, c=33.970(7) Å, γ=120°, V=4278.8(12) Å3, Z=3 and R1(wR2)=0.0512 (0.1171). The crystal structure is constructed from [H2As6V15O42(H2O)]4− anions and [Zn(H2O)4]2+ cations linked through hydrogen bonds into a network. The [H2As6V15O42(H2O)]6− cluster consists of 15 VO5 square pyramids linked by three As2O5 handle-like units.  相似文献   

18.
Chromium doped (CH3)2NH2Al(SO4)2·6H2O (DMAAlS) and (CH3)2NH2Ga(SO4)2·6H2O (DMAGaS) single crystals were grown and investigated using the methods of optical spectroscopy. It was found that the Cr3+ ions in the two crystals are situated in a strong crystal field in which the 2E state is the lowest. The single narrow R-line associated with the 2E–4A2 phosphorescence of Cr3+ in DMAAlS in a ferroelectric phase indicates an undistorted octahedral site, whereas important distortion of Oh symmetry and structural disorder was inferred from spectral data obtained with DMAGaS:Cr3+ in a low temperature phase. Results of optical investigation are discussed taking into account the structural data.  相似文献   

19.
The solid–liquid equilibria of the ternary system H2O–Fe(NO3)3–Co(NO3)2 were studied by using a synthetic method based on conductivity measurements.

Two isotherms were established at 0 and 15 °C, and the stable solid phases which appear are the iron nitrate nonahydrate (Fe(NO3)3·9H2O), the iron nitrate hexahydrate (Fe(NO3)3·6H2O), the cobalt nitrate hexahydrate (Co(NO3)2·6H2O) and the cobalt nitrate trihydrate (Co(NO3)2·3H2O).  相似文献   


20.
A new complex [Cu (C4H7N3) H2O (4,4′-Hbpy)]·SO4·NO3 was synthesized and X-ray characterized. Elemental analysis, X-ray diffraction and infrared spectroscopy of the complex were performed. The crystal system is orthorhombic. Crystal data: Fw=498.98, spacegroup: P212121. Z=4, a=14.952(3), b=20.491(4), c=6.713 Å. V=2056.7(9) Å. λ(Mo-K)=0.71070 Å. μ=12.18 cm−1, Dcalc=1.66 g/cm3, F000=1032.00, R=0.062, Rw=0.087. X-ray analysis illustrated that 4,4′-bpy is mono-protonated and that there are two kinds of anions in one molecule, which give rise to the hydrogen interaction between the molecules in the crystal. Then an extended three-dimensional network is formed along the hydrogen bonds and π–π bonds between the pyridine rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号