首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
刘淑生  孙立贤  徐芬 《化学进展》2008,20(2):280-287
氢能作为未来理想的清洁能源之一,已经成为全球研究的重要领域,而在氢能的应用中最关键的问题是氢气的存储.近年来,人们的研究集中在固态储氢材料上,许多新型储氢材料不断出现,其中由轻元素组成的金属-氮-氢体系拥有储氢容量高、可逆性好等优点,被认为是最有前景的储氢材料之一.目前金属-氮-氢体系已经发展出许多体系,而研究最多的是Li-N-H和Li-Mg-N-H两种体系.本文重点综述了两者作为可逆储氢材料的研究现状,主要从制备方法、储氢性能、反应机理、理论计算和存在的问题等方面进行了讨论,同时指出了金属-氮-氢储氢体系的发展趋势.  相似文献   

2.
氢能以其资源丰富和环境友好性成为未来最具发展潜力的能源。储氢技术是氢能应用中的关键问题。随着计算材料学的发展,利用密度泛函和量子机制第一性原理研究已知材料储氢性能和寻找潜在的新型优良储氢载体已成为当前研究储氢材料的有效方法。本文综述了近年来金属-碳基储氢材料中的金属修饰碳纳米管、C60材料和过渡金属-乙烯复合物的理论计算与实验研究进展,并对该领域未来的研究工作进行了展望。  相似文献   

3.
Hui Li  Junrui Tan 《大学化学》2020,35(8):75-88
近二十年来,有关氢元素的化学研究在基础研究和应用领域都得到了迅速的发展,尤其是氢键和氢能领域的研究。氢键已成为化学、生物、物理和材料科学等多学科所共同关注的基本学科问题,而氢能则是未来新能源中最重要的清洁能源之一,与此相关的氢能制备、储氢材料等研究也取得了重要的进展。然而,在氢元素的教学中,却未能及时补充这些研究成果。此外,与放射性、核能等相关的氢原子同位素也需要更新。本文从氢的同位素、氢键、氢能三个方面,探讨了无机化学教学中氢元素教学内容的重构。  相似文献   

4.
储氢研究进展   总被引:30,自引:0,他引:30  
许炜  陶占良  陈军 《化学进展》2006,18(2):200-210
氢能是21世纪主要的新能源之一。作为一种新型的清洁能源,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题,而氢的储存是氢能应用的关键。储氢材料能可逆地大量吸放氢,在氢的储存与输送过程中是一种重要载体。本文综述了目前所采用或正在研究的主要储氢材料与技术,如高压气态储氢、低温液态储氢、金属氢化物储氢、化学氢化物储氢、吸附储氢、金属有机骨架储氢等,比较了各种储氢的优缺点,并指出其相关发展趋势。  相似文献   

5.
储氢研究进展   总被引:1,自引:0,他引:1  
氢能是21世纪主要的新能源之一。作为一种新型的清洁能源,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题,而氢的储存是氢能应用的关键。储氢材料能可逆地大量吸放氢,在氢的储存与输送过程中是一种重要载体。本文综述了目前所采用或正在研究的主要储氢材料与技术,如高压气态储氢、低温液态储氢、金属氢化物储氢、化学氢化物储氢、吸附储氢、金属有机骨架储氢等,比较了各种储氢的优缺点,并指出其相关发展趋势。  相似文献   

6.
氢能是21世纪主要的新能源之一.作为一种新型的清洁能源,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题,而氢的储存是氢能应用的关键.储氢材料能可逆地大量吸放氢,在氢的储存与输送过程中是一种重要载体.本文综述了目前所采用或正在研究的主要储氢材料与技术,如高压气态储氢、低温液态储氢、金属氢化物储氢、化学氢化物储氢、吸附储氢、金属有机骨架储氢等,比较了各种储氢的优缺点,并指出其相关发展趋势.  相似文献   

7.
纳米限域的储氢材料   总被引:1,自引:0,他引:1  
氢能作为洁净、理想的二次能源,已受到世界各国的广泛关注。然而,氢的储存技术仍然是制约氢能商业化应用的关键技术。利用储氢材料进行储氢被认为是一种安全、高效的固态储氢方式。因此,开发新型高容量的储氢材料与储氢技术成为氢能领域研究的热点之一。纳米限域是将材料填充到纳米孔道里,利用材料和纳米孔道的相互作用促进反应的进行,为化学反应提供一个独特的微环境。近年来,纳米限域逐渐发展成为改善储氢材料热力学和动力学的新方法。本文综述了纳米限域的储氢材料的研究进展,从纳米限域的储氢材料制备、储氢性能、反应机理和存在的问题等方面进行讨论,并指出了纳米限域储氢材料的发展趋势。  相似文献   

8.
甲醇是优异的储氢化合物,质量储氢密度高达12.5%。甲醇-氢能源体系着力于解决氢能应用中储存和输送的瓶颈问题,助力氢能的推广和应用。甲醇高效高选择性原位产氢是甲醇-氢能源体系中的重要环节。基于此,本文介绍了甲醇制氢催化研究的最新进展和面临的挑战。从甲醇储氢的优势、经济合理性出发,结合笔者自身研究情况,对甲醇储氢-原位制氢的方式、应用形式及重整产氢催化剂的结构和催化机理研究进行了梳理、总结。期望为甲醇-氢能源体系的催化研究提供参考,促进氢能走向实用。  相似文献   

9.
陶占良  陈军 《化学进展》2009,21(9):1945-1953
氢能是一种新型的清洁能源,有望替代碳经济,而氢的储存是氢能应用的关键。近年来,研究集中在具有储氢容量高和可逆性好等优点的固态储氢材料上。许多新型储氢材料不断出现,其中以MAlH4(M=Li, Na)为代表的金属复合氢化物体系被认为是最有前景的储氢材料之一。本文综述了MAlH4(M=Li, Na)作为可逆储氢材料的研究现状,主要从吸放氢反应、储氢性能、反应机理、理论计算和存在的问题等方面进行了讨论,并指出其相关发展趋势。  相似文献   

10.
从钛铁矿粉制备FeTi及其吸氢性能的研究   总被引:7,自引:0,他引:7  
氢能源是一种理想的新能源。储氢材料的研制是开发氢能的关键之一。FeTi是性能优良的储氢材料之一[1-3],为目前常温储氢最便宜的一种材料[4]。  相似文献   

11.
本文详细介绍了氢作为一种洁净二次能源载体的优点及发展潜力,综合描述了金属储氢材料、矿物多孔储氢材料、有机液态储氢材料的储氢特性及最新研究状况。最后就储氢材料的发展提出自己的见解。  相似文献   

12.
金属-有机框架(MOFs)材料是由金属簇节点或金属离子与有机配体连接而成的典型的无机-有机杂合物, 作为一类新兴的无机多孔晶态材料, MOFs因具有高度有序的多孔性、 结构可裁剪性、 高比表面积及灵活多变的骨架类型等优点而在工业合成、 能源开发、 环境治理和生物制药等领域展现出广阔的应用前景. 本文从氢能源的开发利用出发, 总结了近年来MOFs基纳米复合材料在催化化学制氢方面的研究进展. 讨论了常见的含氢量高的化学储氢材料, 包括氨硼烷、 甲酸和水合肼等; 催化材料主要有单一MOFs、 MOF基贵金属和非贵金属复合材料及MOF基衍生材料等. 最后, 对MOF基复合材料在液相催化化学储氢中的应用前景进行了展望.  相似文献   

13.
Electrochemical hydrogen storage in porous carbon materials is emerging as a cost-effective hydrogen storage and transport technology with competitive power and energy densities. The merits of electrochemical hydrogen storage using porous conductive carbon-based electrodes are reviewed. The employment of acidic electrolytes in such storage systems is compared with alkaline electrolytes. The recent innovations of a proton battery for smaller-scale electricity storage, and a proton flow reactor system for larger (grid)-scale storage and bulk export of hydrogen produced from renewable energy, are briefly described. It is argued that such systems, along with variants proposed by others, all of which rely on electrochemical hydrogen storage in porous carbons, can contribute to the search for energy storage technologies essential for the transition to a zero-emission global economy.  相似文献   

14.
吴芝  孙岚  林昌健 《电化学》2019,25(5):529
随着人类社会的快速发展和传统能源的急剧消耗,能源紧缺和环境污染已经成为制约人类社会可持续发展的重要因素,构建清洁的环境友好的可再生新能源体系是当前各国高度关注的焦点和重大战略.在众多绿色环保、可持续新能源选项中,半导体光催化制氢因其可利用清洁可再生的太阳能制取高效清洁氢能,有望完全解决能源紧缺和环境污染问题,成为最有应用前景的技术之一. 本文通过概述半导体光催化制氢原理、半导体光电化学及光电稳定性、半导体光催化制氢效率,重点介绍半导体光催化剂、光生电荷分离及光催化制氢体系等方面若干新进展,并对太阳能光催化制氢技术的发展加以评述和展望.  相似文献   

15.
《Mendeleev Communications》2021,31(4):423-432
The deterioration of the environmental situation has led to the need to restructure the world’s power industry, and clean renewable power sources are coming to the forefront. This review deals with recent advances in the development of promising ion-exchange membrane materials for two types of application that have been intensely developing recently, namely, hydrogen energy and reverse electrodialysis. Special attention is paid to the comparison of two properties of membranes, conductivity and selectivity, that are competing but fundamentally important in both areas. Perfluorinated sulfonic acid membranes now play a dominant role in hydrogen power engineering, as they provide not only high proton conductivity but also chemical stability and low gas permeability. The review also covers other types of membrane materials, including anion exchange membranes, polybenzimidazoles and hybrid membranes containing inorganic nanoparticles that have been actively developed in recent years. The milder operating conditions of membranes in reverse electrodialysis units allow one to use less expensive non-perfluorinated membranes, including grafted ones. It is of note that in devices of this type, the selectivity of membranes to the transfer of oppositely charged ions is a more important parameter.  相似文献   

16.
With the increased energy demand,developing renewable and clean energy technologies becomes more and more significant to mitigate climate warming and alleviate the environmental pollution.The key point is design and synthesis of low cost and efficient materials for a wide variety of electrochemical reactions.Over the past ten years,two-dimensional(2D)nanomaterials that graphene represents have been paid much attention as a class of the most promising candidates for heterogeneous electrocatalysts in electrochemical storage and conversion.Their unique properties,such as good chemical stability,good flexibility,and good electronic properties,along with their nanosized thickness and large specific area,make them exhibit comprehensively good performances for energy storage and conversion.Here,we present an overview on the recent advances in electrochemical applications of graphene,graphdiyne,transition metal dichalcogenides(TMDs),and MXenes for supercapacitors(SCs),oxygen reduction reaction(ORR),and hydrogen evolution reaction(HER).  相似文献   

17.
韩璐  秦伟 《应用化学》2018,35(8):963-968
目前,寻找新型能源成为解决能源和环境问题的关键,氢能以其高效能、无污染等优点成为研究重点。其中,开发具有高储氢量和优异循环稳定性的新材料是利用氢能的重要研究方向。近些年,Co_9S_8凭借其优良的电化学储氢性能和较高的储氢容量成为目前研究热点,但其抗粉化性能仍有待于进一步提高。本文采用溶胶凝胶法和煅烧法得到了不同质量分数TiO_2包覆Co_9S_8的电极材料,利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和电化学测试系统分析包覆材料组成与性能,研究不同质量分数的TiO_2对材料电化学储氢性能的影响。结果表明,当TiO_2质量分数为3%时,产物的储氢性能和循环稳定性最好,最大储氢容量(质量分数)为2.03%,且经过30次充放电后,其放电容量仍能保持在60%。  相似文献   

18.
李兰兰  程方益  陶占良  陈军 《应用化学》2010,27(9):998-1003
综述了第一性原理计算在储氢材料研究中取得的成果和最新的进展。 第一性原理计算在储氢材料研究中的应用主要有以下4个方面: 1)研究纳米结构的储氢性能; 2) 研究储氢材料中掺杂和缺陷的作用及对储氢性能的影响; 3)研究储氢机理; 4)确定氢化物的几何结构以及预测新型储氢材料。 同时展望了第一性原理计算在储氢领域中的应用前景。  相似文献   

19.
Hydrogen is in limelight as an environmental benign alternative to fossil fuels from few decades. To bring the concept of hydrogen economy from academic labs to real world certain challenges need to be addressed in the areas of hydrogen production, storage, and its use in fuel cells. Crystalline metal-organic frameworks (MOFs) with unprecedented surface areas are considered as potential materials for addressing the challenges in each of these three areas. MOFs combine the diverse chemistry of molecular linkers with their ability to coordinate to metal ions and clusters. The unabated flurry of research using MOFs in the context of hydrogen energy related activities in the past decade demonstrates the versatility of this class of materials. In the present review, we discuss major strategical advances that have taken place in the field of “hydrogen economy and MOFs” and point out issues requiring further attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号