首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the use of capillary zone electrophoresis (CZE) for the qualitative and quantitative determination of major alkaloids (i.e., thebaine, codeine, morphine, papavarine and narcotine) in gum opium involving the analysis of alkaloids without derivatization or purification. Three extractions with 2.5% w/v aqueous acetic acid quantitatively extracted major alkaloids. The separation was carried out by CZE using a 7:3 mixture of methanol and sodium acetate (100 mM, pH 3.1) at a potential of 15 kV, with UV detection at 224 nm. Spiking of pure reference alkaloid standards in the opium extract was used for peak identification. The influences of buffer composition, pH and voltage on the separation of alkaloids were studied. The detection limit of each alkaloid dissolved in methanol was found to be 850 ng/mL (morphine), 450 ng/mL (thebaine), 500 ng/mL (codeine), 550 ng/mL (papaverine), and 500 ng/mL (narcotine) at an injection pressure of 300 mbar (injection volume, 4 nL) with a signal-to-noise ratio of 3:1. The external standard method was used for the quantification of alkaloids. The calibration plot was based on linear regression analysis. The relative standard deviation (RSD) for peak area and migration time was in the range of 1.03-3.56% and 0.34-0.69%, respectively. Percentage compositions (g%) of opium alkaloids in five gum opium samples were found to be in the range of 14.45-15.95 (morphine), 2.0-3.45 (codeine), 1.32-2.73 (thebaine), 0.92-2.37 (papavarine), and 3.85-5.77 (narcotine). The method developed is suitable for the routine analysis of major gum opium alkaloids in samples of forensic importance.  相似文献   

2.
Fang L  Kang J  Yin XB  Yang X  Wang E 《Electrophoresis》2006,27(22):4516-4522
CE with electrochemiluminescence (ECL) detection technique was successfully applied for the chiral separation of a kind of class IA antiarrhythmic racemic drug. To the best of our knowledge, this is the first report of ECL detection used in chiral CE. To get better detection sensitivity and good enantioresolution at the same time, the conditions of capillary inlet and outlet buffer were systematically optimized. Unlike the traditional chiral separation method, the buffers we used in the capillary inlet and outlet differed from each other in terms of buffer pH, ionic strength, type of BGE as well as buffer composition. Under the optimum conditions, baseline enantioseparation and highly sensitive detection of the enantiomers were achieved. Wide linear relationship of each enantiomer was achieved in the range of 5 x 10(-7) to 2 x 10(-5) mol/L with relative coefficients of 0.996 and 0.997, respectively. The detection limits were estimated to be 8 x 10(-8) and 1.0 x 10(-7) mol/L (S/N = 3) for the enantiomers, respectively. In addition, a successful application of this new method to the chiral separation of the racemic drug in spiked plasma samples confirmed the validity and applicability of the chiral CE-ECL method.  相似文献   

3.
Bao Y  Yang F  Yang X 《Electrophoresis》2011,32(12):1515-1521
A CE‐electrochemiluminescence(CE‐ECL) detection system, CE/tris(2,2′‐bipyridyl) ruthenium(II)ECL with ionic liquid, was established for the determination of diester‐diterpenoid aconitum alkaloids (aconitine (AC), mesaconitine (MA) and hypaconitine (HA)) in traditional Chinese herbal medicine. Running buffer containing 25 mM borax‐20 mM 1‐ethyl‐3‐methylimidazolium tetrafluoroborate at pH 9.15 was used, which resulted in significant changes in separation and obvious enhancement in ECL intensity for AC, MA and HA with similar structures. End‐column detection was achieved in 50 mM phosphate buffer with 5 mM (pH 9.15) at applied detection voltage of 1.20 V when the distance between the Pt working electrode and outlet of capillary (50 cm×25 μm id) was set at 150 μm. One single quantitative analysis of three alkaloids was achieved at a separation voltage of 15 kV within 10 min. Moreover, two extraction processes (ethanol extraction and ethyl ether extraction after basification) were investigated. The result showed that ethanol extraction process has higher extraction efficiency than ethyl ether extraction process. Under the optimized conditions, the detection limits of AC, MA and HA were 5.62×10?8, 2.78×10?8 and 3.50×10?9 mol/L (S/N=3), respectively. The method was successfully applied to determine the amounts of AC, MA and HA in the aconitum herbal samples.  相似文献   

4.
Yin J  Guo W  Du Y  Wang E 《Electrophoresis》2006,27(23):4836-4841
A facile CE method coupled with tris(2,2'-bipyridyl) ruthenium(II)-based electrochemiluminescence [Ru(bpy)(3) (2+)] detection was developed for simultaneous determination of Aconitum alkaloids, i.e., hypaconitine (HA), aconitine (AC), and mesaconitine (MA) in baseline separation. The optimal separation of these Aconitum alkaloids was achieved in a fused-silica capillary column (50 cm x 25 microm id) with 30 mM phosphate solution (pH 8.40) as running buffer at 12 kV applied voltage. The three alkaloids can be determined within 10 min by a single run. The calibration curves showed a linear range from 2.0 x 10(-7) to 2.0 x 10(-5) M for HA, 3.4 x 10(-7) to 1.7 x 10(-5) M for AC, and 3.8 x 10(-7) to 1.9 x 10(-5) M for MA. The RSDs for all analytes were below 3.01%. Good linear relationships were found with correlation coefficients for all analytes exceeding 0.993. The detection limits were 2.0 x 10(-8) M for HA, 1.7 x 10(-7) M for AC, and 1.9 x 10(-7) M for MA under optimal conditions. This method was successfully applied to determine the three alkaloids in Aconitum plants.  相似文献   

5.
Yin J  Xu Y  Li J  Wang E 《Talanta》2008,75(1):38-42
A capillary electrophoresis method coupled with electrochemiluminescence detection for the analysis of quinolizidine alkaloids was established, especially, oxymatrine (OMT) which could not be measured by previous electrochemiluminescence methods was detected sensitively herein. Complete separation of sophoridine (SR), matrine (MT) and OMT was achieved within 13 min using a background electrolyte of 50mM phosphate buffer at pH 8.4 and a separation voltage of 15 kV. The calibration curves showed a linear range from 2.8 x 10(-8) to 4.4 x 10(-7) M for SR, 2.7 x 10(-8) to 4.4 x 10(-7) M for MT, and 2.5 x 10(-7) to 4.0 x 10(-6)M for OMT, respectively. The relative standard derivations for all analytes were below 3.1%. Good linear relationships were showed with correlation coefficients for all analytes exceeded 0.987. The detection limits were 1.0 nM for SR and MT, and 40 nM for OMT under the optimal conditions, respectively. The developed method was nearly harmless to the human and environment.  相似文献   

6.
This work reported that ionic liquid (IL) ([Bmim] [PF6]) and sulfobutylether‐β‐CD (SBE‐β‐CD) were used as electrolyte additives for the separation and determination of camptothecin (CPT) alkaloids by CZE. Separation parameters such as the buffer type, pH, and concentration of the running buffer, the concentration of SBE‐β‐CD and IL, temperature, and separation voltage were all investigated in order to achieve the maximum possible resolution. The four analytes were baseline separated within 10 min in capillary at the separation voltage of 15 kV with a running buffer consisting of 20 mM borate buffer, 20 mM IL, and 100 mM SBE‐β‐CD at pH 9.0. Under such conditions, good linearity about two orders of magnitudes of peak areas was achieved for the investigated CPT alkaloids with the correlation coefficients ranging from 0.9946 to 0.9985. For all analytes, detection limits (S/N = 3) and quantitation limits (S/N = 10) range from 0.05 to 0.92 μg/mL and 0.17 to 3.06 μg/mL, respectively. The proposed method has not only been successfully applied to the separation and determination of CPT alkaloids but also showed that IL seemed to be a promising additive in CZE separation.  相似文献   

7.
Liu J  Yang X  Wang E 《Electrophoresis》2003,24(18):3131-3138
Capillary electrophoresis (CE) with tris(2,2'-bipyridyl) ruthenium (II) (Ru(bpy)3(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of four polyamines (putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)) analysis. The four polyamines contain different amine groups, which have different ECL activity. There are several parameters which influence the resolution and ECL peak intensities, including the buffer pH and concentrations, separation voltage, sample injection, electrode materials, and Ru(bpy)3(2+) concentrations. Polyamines are separated by capillary zone electrophoresis in an uncoated fused-silica capillary (50 cmx25 micro m (ID) filled with acidic phosphate buffer (200 mmol/L phosphate, pH 2.0) - 1mol/L phosphoric acid (9:1 v/v) and a separation voltage of 5 kV (25 micro A), with end-column Ru(bpy)3(2+) ECL detection. A 5 mmol/L Ru(bpy)3(2+) solution plus 200 mmol/L phosphate buffer (pH 11.0) is added into the reagent reservoir. The calibration curve is linear over a concentration range of two or three orders of magnitude for the polyamines. The analysis time is less than 25 min. Detection limits for Put and Cad are 1.9x10(-7) mol/L and 7.6x10(-9) mol/L for Spd and Spm, respectively. Intraday and interday relative standard deviations of ECL peak intensities are less than 8%. The main advantages of this CE-ECL detection technique for polyamines analysis presented herein are the omission of chemical derivatization of the analytes and the high selectivity.  相似文献   

8.
Xu Y  Gao Y  Wei H  Du Y  Wang E 《Journal of chromatography. A》2006,1115(1-2):260-266
Capillary electrophoresis (CE) with Ru(bpy)3(2+) electrochemiluminescence (ECL) detection system was established to the determination of contamination of banknotes with controlled drugs and a high efficiency on-column field-amplified sample stacking (FASS) technique was also optimized to increase the ECL intensity. The method was illustrated using heroin and cocaine, which are two typical and popular illicit drugs. Highest sample stacking was obtained when 0.01 mM acetic acid was chosen for sample dissolution with electrokinetical injection for 6 s at 17 kV. Under the optimized conditions: ECL detection at 1.2 V, separation voltage 10.0 kV, 20 mM phosphate-acetate (pH 7.2) as running buffer, 5 mM Ru(bpy)3(2+) with 50 mM phosphate-acetate (pH 7.2) in the detection cell, the standard curves were linear in the range of 7.50x10(-8) to 1.00x10(-5) M for heroin and 2.50x10(-7) to 1.00x10(-4) M for cocaine and detection limits of 50 nM for heroin and 60 nM for cocaine were achieved (S/N = 3), respectively. Relative standard derivations of the ECL intensity and the migration time were 3.50 and 0.51% for heroin and 4.44 and 0.12% for cocaine, respectively. The developed method was successfully applied to the determination of heroin and cocaine on illicit drug contaminated banknotes without any damage of the paper currency. A baseline resolution for heroin and cocaine was achieved within 6 min.  相似文献   

9.
Opium samples from four different locations and poppy straw from different plant varieties have been assayed using micellar capillary electrophoresis incorporating a sweeping technique. Individual alkaloids (morphine, codeine, papaverine, noscapine, thebaine, oripavine, reticuline and narceine) were quantitatively determined in the different samples by a validated capillary electrophoresis method. Unsupervised pattern recognition of the opium samples and the poppy straw samples using hierarchical cluster analysis (HCA) and principal component analysis (PCA), showed distinct clusters. Supervised pattern recognition using soft independent modelling of class analogy (SIMCA) was performed to show individual groupings and allow unknown samples to be classified according to the models built using the CZE assay results.  相似文献   

10.
Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence (ECL) detection in a capillary electrophoresis separation system was used for the determination of chlorpheniramine (CPM). The experimental conditions, such as the applied potential, separation voltage, injection voltage, injection time and the pH of the separation buffer were considered in detail. The ECL intensity showed two linear responses to CPM, i.e., from 15 microM to 1 mM and from 0.8 microM to 15 microM with a detection limit of 0.5 microM. The binding of CPM with human serum albumin was also monitored using this method and the binding constant was estimated to be 4.1 x 103 M(-1).  相似文献   

11.
Sun J  Xu X  Wang C  You T 《Electrophoresis》2008,29(19):3999-4007
Amphetamines including methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine were separated and detected by CE using simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection (CE-EC/ECL). Factors that influenced the separation and detection performance, such as the detection potential, the pH value and concentration of the running buffer, the separation voltage and the pH of the detection buffer, were investigated. LODs of 3.3x10(-8) mol/L (0.16 fmol), 1.6x10(-7) mol/L (0.78 fmol) and 3.3x10(-8) mol/L (0.16 fmol) were obtained for methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine, respectively. For practical application, a liquid-liquid extraction with ethyl acetate procedure was developed for urine sample pretreatment and extraction efficiencies higher than 90% were obtained. The established simultaneous CE-EC/ECL was successfully applied for urine sample analysis.  相似文献   

12.
Huang XJ  Pu QS  Fang ZL 《The Analyst》2001,126(3):281-284
A capillary electrophoresis (CE) system with chemiluminescence (CL) detection was combined with flow injection (FI) sample introduction on a chip platform. A falling-drop interface was applied to perform FI split-flow sample introduction while achieving electrical isolation from the CE high voltage. A tubular reservoir at the capillary outlet served as both the CL reaction and detection cell for the luminol-peroxide-metallic ion chemiluminescent reaction, with the luminol included in the separation buffer and CL reagent H2O2 continuously introduced into the outlet reservoir. An optical fiber was positioned within the outlet reservoir directly opposite, and 300 microns away from, the capillary outlet for collecting and transferring the generated CL to the PMT. The peak height signals and the separation efficiency were almost independent of the reagent flow-rate, making the system a robust one. The performance of the system was illustrated by the separation of Co(II) and Cu(II), achieving baseline separation in 60 s. Detection limits (3 sigma) were 1.25 x 10(-8) and 2.3 x 10(-6) mol dm-3 for Co(II) and Cu(II), respectively. Peak height precision was 1.9% RSD (n = 9) at the 10(-7) mol dm-3 Co level.  相似文献   

13.
A capillary electrophoresis (CE) coupled with electrochemiluminescence (ECL) detection method for the analysis of ethambutol (EB) and methoxyphenamine (MP) has been investigated. Complete separation of EB and MP was achieved in 8 min using a background electrolyte of 20 mM sodium phosphate at pH 10.0 and a separation voltage of 9 kV. ECL detection was performed with an indium/tin oxide (ITO) working electrode biased at 1.4 V (versus a Pt wire reference) in a 200 mM sodium phosphate buffer (pH 8.0) containing 3.5 mM Ru(bpy)3(2+) (where bpy = 2,2'-bipyridyl). Linear correlation (r > or = 0.993) between ECL intensity and drug concentration was obtained in the range 2-50 ng/ml. The limits of detection (LODs) for EB and MP in water were 1.0 and 0.9 ng/ml, respectively. The relative standard deviation values on peak size (10 ng/ml level) and migration time for the two drugs were in the ranges 5-8 and 0.2-0.7% (n = 7), respectively. Applicability of the CE-ECL method to the analysis of human plasma spiked with EB and MP was examined. The LODs for EB and MP in plasma were 0.4 and 0.3 microg/ml, respectively.  相似文献   

14.
Cao W  Liu J  Yang X  Wang E 《Electrophoresis》2002,23(21):3683-3691
A new end-column electrochemiluminescence (ECL) detection technique coupling to capillary electrophoresis (CE) is characterized. A 300 microm diameter Pt working electrode was used to directly couple with a 75 microm inner diameter separation capillary without an electric field decoupler. The hydrodynamic cyclic voltammogram (CV) of Ru(bpy) 3 2+ showed that electrophoretic current did not affect the ECL reaction. The presence of high-voltage (HV) field only resulted in the shift of the ECL detection potential. The distance of capillary to electrode was an important parameter for optimizing detection performance as it determined the characteristics of mass transport toward the electrode and the actual concentration of Ru(bpy) 3 2+ in the detection region. The optimum distance of capillary to electrode was decided by the inner diameter of the capillary, too. For a 75 microm capillary, the working electrode should be placed away from the capillary outlet at a distance within the range of 220-260 microm. The effects of pH value of ECL solution and molecular structure of analytes on peak height and theoretical plate numbers were discussed. Using the 75 microm capillary, under the optimum conditions, the method provided a linear range for tripropylamine (TPA) between 1 x 10(-10) and 1 x 10(-5) mol/L with correlation coefficient of 0.998. The detection limit (signal-to-noise ratio S/N = 3) was 5.0 x 10(-11) mol/L. The relative standard deviation in peak height for eight consecutive injections was 5.6%. By this new technique lidocaine spiked in a urine sample was determined. The method exhibited the linear range for lidocaine from 5.0 x 10(-8) to 1.0 x 10(-5) mol/L with correlation efficient of 0.998. The limit of detection (S/N = 3) was 2.0 x 10(-8) mol/L.  相似文献   

15.
A method based on capillary electrophoresis with electrochemical detection (CE-ED) has been developed for the determination of hesperidin (HP) and synephrine (SP) in the Chinese traditional herbal drug, Pericarpium Citri Reticulatae, the dried rind of the ripe fruits of Citrus reticulata Blanco (mandarin orange). The effects of some important factors such as the acidity and concentration of running buffer, separation voltage, and detection potential were investigated to determine the optimum conditions. The working electrode was a 300 microm diameter carbon disc electrode positioned opposite the outlet of the capillary. Both analytes could be well separated within 5 min in a 40 cm long capillary at a separation voltage of 12 kV in 50 mmol L(-1) borate buffer (pH 9.0). Excellent linearity was observed for the dependence of peak current on analyte concentration in the range from 2.5 x 10(-6) to 1.0 x 10(-3) mol L(-1) for SP and from 5.0 x 10(-6) to 1.0 x 10(-3) mol L(-1) for HP. The detection limits (S/N=3) for SP and HP were 4.96 x 10(-7) mol L(-1) and 6.54 x 10(-7) mol L(-1), respectively. This method has been successfully applied for the analysis of real samples, with satisfactory results.  相似文献   

16.
There are three types of opiate alkaloids. First, the poppy alkaloids: morphine, codeine, thebaine, noscapine and papaverine; then, the semi-synthetic and synthetic derivatives used in therapy as antitussives and analgesics, such as pholcodine, ethylmorphine and dextromethorphan; at last narcotic compounds, diacetylmorphine (heroin) and opiates employed as substitutes in treatment of addiction: buprenorphine and methadone. For classical thin-layer chromatography (TLC) of opium alkaloids, it is necessary to use complex eluents with strong alkaline substances to obtain a clean separation between morphinan and isoquinoline compounds. This study purposes the planar chromatographic analysis of these substances by the automated multiple development (AMD) compared with results obtained by classical TLC method. The aim of this work was to achieve the best separation of these opiate alkaloids and derivatives by this modern technique of planar chromatography. The AMD system provided a clean separation for each of three opiates groups studied and the best results have been obtained with universal gradient: methanol 100, methanol-dichloromethane 50/50, dichloromethane 100, dichloromethane 100, hexane 100 for opium alkaloids and with gradient A: 5% of 28% ammonia in methanol 100, acetone 100, acetone 100, ethyl acetate-dichloromethane 50/50, dichloromethane 100 for antitussives and substitutes. Two reagents were used for the detection of alkaloids by spraying: Dragendorff and iodoplatinate reagents. The detection limits with these two reagents were 1 microg for ethylmorphine, thebaine, papaverine, codeine, and 2 microg for morphine and noscapine and other alkaloids.  相似文献   

17.
The coupling of Ru(bpy)32+ based electrochemiluminescence (ECL) detection with capillary electrophoresis (CE) was developed for the simultaneous determination of the two major active ingredients (atropine and scopolamine) in Flos daturae. Parameters related to the separation and detection were discussed and optimized. It was proved that 20 mM phosphate buffer at pH 8.48 could achieve the most favorable resolution, and the high sensitivity of detection was obtained by maintaining the detection potential at 1.2 V. Under the optimized conditions: ECL detection at 1.2 V, 20 mM phosphate buffer at pH 8.48, 5 mM Ru(bpy)32+ and 50 mM phosphate buffer at pH 7.48 in the detection reservoir, detection limits of 5 × 10−8 mol/l for atropine and 1 × 10−6 mol/l for scopolamine were obtained. Relative standard derivations of the ECL intensity and the migration time were 5.16 and 0.71% for atropine and 5.07 and 1.22% for scopolamine, respectively. Developed method was successfully applied to determine the amounts of both alkaloids in Flos daturae. A baseline separation for atropine and scopolamine was achieved within 11 min.  相似文献   

18.
A capillary electrophoresis method with ultraviolet (UV) detection was developed and optimized for the enantiomer separation of norepinephrine (NE), epinephrine (EP) and isoprenaline (IP) using dual cyclodextrins (CDs) of 2-hydroxypropyl-beta-CD (HP-beta-CD) and heptakis (2,6-di-o-methyl)-beta-CD (DM-beta-CD) as chiral selectors. Optimal separation was obtained using a running buffer of 50mM phosphate containing 30mM HP-beta-CD and 5mM DM-beta-CD at pH 2.90 and a field strength of 20kV in 45cmx75mum (40cm effective length) uncoated capillary. The UV absorbance detection was set at 205nm. A 0.1% (w/w) polyethylene glycol or 0.1% (v/v) acetonitrile was used to enhance the detection sensitivity. There was a wide and excellent linear calibration graph for each enantiomer in the range 1.0x10(-3) to 1.0x10(-6)M and the detection limit (S/N=3) was found from 8.5x10(-7) to 9.5x10(-7)M. The method has been applied for the determination of isoprenaline in isoprenaline hydrochloride aerosol and to the analysis of serum samples. The recoveries of NE and EP in serum and IP in drug were ranged from 90 to 110%. The relative standard deviations of all the analyte peaks were less than 2.8% for migration time and less than 4.8% for peak area.  相似文献   

19.
Summary A reversed phase HPLC method for the separation of the five major alkaloids fromPapaver somniferum L., morphine, codeine, thebaine, papaverine and noscapine, has been developed and validated. By use of a basedeactivated silica-based stationary phase excellent peak shape was achieved for each substance. The five alkaloids were quantified by internal standardization within 20 min and with good precision. The method is applicable to opium and to poppy straw.  相似文献   

20.
Li X  Xu X  Albano DR  You T 《The Analyst》2011,136(24):5294-5301
The first detailed examination of non-aqueous capillary electrophoresis with electrochemical and electrochemiluminescence detections (NACE-EC/ECL), separation parameters and their interactions via central composite design was presented. This concept was demonstrated by examining the optimization separation conditions of seven antihistamines (chlorpheniramine, cyproheptadine, diphenhydramine, doxylamine, methapyrilene, terfenadine, and triprolidine) by NACE-EC/ECL. To evaluate the NACE separation quality, the chromatography resolution statistic function (CRS(-1) function) with regard to the resolution and migration time was established as the response variable. The influences of three experimental variables (buffer apparent pH value (pH*), buffer (TBAP) concentration, and separation voltage) on the response were investigated. A set of optimal conditions was obtained from central composite design: 9.2 mM TBAP in ACN (pH* 4.0) and voltage (12.7 kV), and under these optimum conditions, the seven antihistamines could be well separated in less than 10 min. The obtained electropherograms indicated that the dual EC/ECL detection system was indispensable since the six antihistamines (except for triprolidine) displayed both EC and ECL response, whereas triprolidine only displayed the EC response. This work is instructive for investigators in simplifying the NACE-EC/ECL development procedures for multi-component analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号